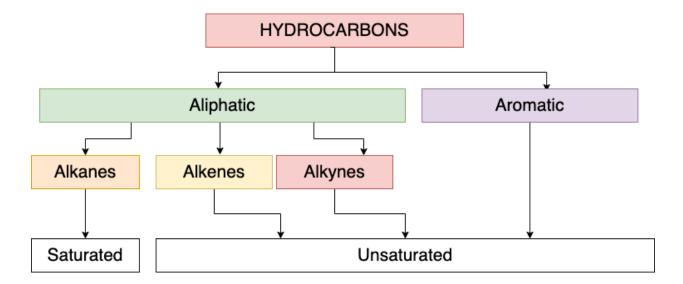


Organic Chemistry

1st stage

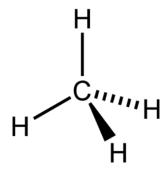
Asst. Lect.Zahraa Hazim Hamid

Lecture 4: Hydrocarbons (alkane)


Department of Medical Biotechnology

2024-2025

Item	Subject	Page
		No.
1.1	Hydrocarbons	3
1.1.1	Alkanes	3
1.1.2	Nomenclature of Alkanes	4


1.1 Hydrocarbons

A **hydrocarbon** is a compound composed of only carbon and hydrogen. Figure 1 shows the four classes of hydrocarbons.

1.1.1 Alkanes

Alkanes are the simplest type of organic compounds and member of a larger class of organic compounds called saturated hydrocarbons that contains only carbon—carbon single bonds. Alkanes have the general molecular formula C_nH_{2n+2} .

The simplest alkane is methane which is CH₄. Alkane molecules have a tetrahedral shape around carbon atoms. Carbon atoms in alkane molecules form sigma bonds with surrounding carbon and hydrogen atoms. As a result, carbon atoms in alkanes are surrounded by 4 pairs of bonding electrons which equally repel each other to form 109.50 bond angles.

1.1.2 Nomenclature of Alkanes

(Alkanes Naming Rules) قواعد تسمية الألكانات

IUPAC NAME

1- Choose the longest continuous chain of carbon atoms.

2- Number the chain starting from the end closest to a branch to give the branches the lowest possible numbers.

3- Use the prefixes di-, tri-, or tetra- if there are identical branches in the compound.

Molecular Formula	Structural formula	Name
CH ₄	CH ₄	Methane
C_2H_6	$\mathrm{CH3}-\mathrm{CH_3}$	Ethane
C_3H_8	CH3 – CH ₂ –CH3	Propane
C_4H_{10}	$CH3 - CH_2$ – $CH2$ – CH_3	Butane
C_5H_{12}	$CH3 - CH_2 - CH_2 - CH_2 - CH_3$	Pentane
C_6H_{14}	CH3 – CH ₂ –CH2–CH ₂ –CH ₂ –CH ₃	Hexane
C_7H_{16}	$CH3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$	Heptane
C_8H_{18}	$CH3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 -$	octane
	CH ₂ -CH ₃	

Examples

2-methyl butane

$$\begin{array}{c|cccc} & C_2H_5 & C_2H_5 \\ & | & | \\ CH_3-CH_3-CH-CH_2-CH-CH_2-CH_3 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array}$$

3,5 di ethyl heptane

2,2 dimethyl propane 2,2 dibromo propane

Q/ whish is correct