

College of Sciences Department of Cybersecurity

كلية العلوم قسم الأمن السيبراني

Lecture: (5)

Code efficiency and redundancy

Subject: Coding Techniques First Stage Lecturer: Asst. Lecturer. Suha Alhussieny

Study Year: 2023-2024

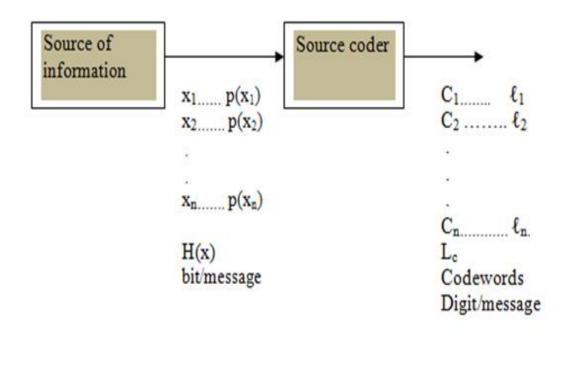
Department of Cybersecurity

Source codes:

The source coder will transform the messages into a finite sequence of digits, called the codeword of the message. If binary digits (bits) are used in this codeword, then we obtain what is called " Binary Source Coding".

The aim of source coding is to produce a code which, on average, requires the transmission of the maximum amount of information for the fewest binary digits. This can be quantified by calculating the **efficiency** η of the code.

A code is a mapping from the discrete set of symbols $\{0, \dots, M - 1\}$ to finite binary sequences.



Al- Mustaqbal University College of Sciences Department of Cybersecurity

However before calculating efficiency we need to establish the length of the code. The length of a code is the average length of its code words and is obtained by:

$$L = \sum_{i=1}^{n} P_i l_i$$

For the purposes of efficiency. The average code length is minimized, where li is the number of digits in the i^{th} symbol and n is the number of symbols the code contains.

For fixed length code

 $L = l_i = [log 2 M]$ where M is the number of symbols.

OR

1- $L_c = \log_2 n$ bit/message if $n = 2^r$ (n = 2, 4, 8, 16, ..., and r is an $integer) which gives <math>\eta = 100\%$ 2- $L_c = Int[\log_2 n] + 1$ bits/message if $n \neq 2^r$ which gives less efficiency

College of Sciences Department of Cybersecurity

Source Code Efficiency:

- L = average length of the code
- $L = \sum_{i=1}^{n} Pi \ li \ bits/symbol.$

 $\xi_{code} = \frac{H(x)}{L} * 100\%$ where $\xi_{code} = \text{code Efficiency}$

Redundancy of the Code:

$$R_{code} = \frac{L - H(x)}{L} * 100\% = \left(1 - \frac{H(x)}{L}\right) * 100\%$$

= $(1 - \xi_{code}) * 100\%$ where $R_{code} = Code Redundancy$

Example 1:

Let $x = \{x1, x2, \dots, x16\}$ where Pi = 1/16 for all i, fined ξ source code

Sol:

 $H(x) = \log 2 M = \log 2 16 = 4 \text{ bits/symbol}$ (because P1 = P2 = ..= P16 = 1/M)

L = [log2 M]

 $L = [log 2 \ 16] = 4$ bits/symbol.

Code Redundancy = L - H.

Page | 4

Study Year: 2023-2024

College of Sciences Department of Cybersecurity

R = 4 - 4 = 0.

:.
$$\xi_{source\ code} = \frac{H(x)}{L} * 100\% = \frac{4}{4} * 100\% = 100\%$$

Example 2:

Let $x = \{x1, x2, \dots, x12\}$ where Pi = 1/12 for all i, fined ξ source code

Sol:

 $H(x) = log_2 \ M = log_2 \ 12 = 3.585$ bit/symbol (because $P1 = P2 = \ldots = P12 = 1/M$)

 $L_c = Int[\log_2 n] + 1$ bits/message

L= Int $[\log_2 12]+1 = 4$ bits/symble

Code Redundancy = L - H.

R = 4 - 3.585 = 0.415.

$$\therefore \quad \xi_{source\ code} = \frac{H(x)}{L} * \ 100\% = \frac{3.585}{4} * \ 100\% = 89\ \%$$

College of Sciences Department of Cybersecurity

Example 3:

For ten equi-probable messages coded in a fixed length code, find the efficiency.

Sol:

$$p(x_i) = \frac{1}{10}$$
 and $L_C = Int[\log_2 10] + 1 = 4$ bits

$$\eta = \frac{H(X)}{L_c} \times 100\% = \frac{\log_2 10}{4} \times 100\% = 83.048\%$$

Example 4:

For eight equi-probable messages coded in a fixed length code, find the efficiency

Sol:

$$p(x_i) = \frac{1}{8}$$
 and $L_c = \log_2 8 = 3$ bits and $\eta = \frac{3}{3} \times 100\% = 100\%$