

Ministry of Higher Education and Scientific Research – Iraq AL-Mustaqbal University

Department of Electrical Engineering techniques الرياضيات التكاملية

Completing The Square Formula

م.م ز هراء إبراهيم الهزاع

```
المحاضرة 5 داخل في امتحان المد
```

Completing The Square Formula

 $x^{2} + bx + c = (x + b/2)^{2} + (c - b^{2}/4)$

This method is known as completing the square method. We have achieved it geometrically.

We know that,

 $x^2 + bx + c = 0$

This can be written as:

 $(x + b/2)^2 + (c - b^2/4) = 0$

 $\Rightarrow (\mathbf{x} + \mathbf{b}/2)^2 = -(\mathbf{c} - \mathbf{b}^2/4)$

This formula can be used to solve the quadratic equations by completing the square technique.

Completing the Square Examples

Example 1: Find the roots of the quadratic equation $x^2 + 4x - 5 = 0$ by the method of completing the square.

Solution:

Given quadratic equation is:

 $\underline{x^2 + 4x - 5 = 0}$

Comparing the equation with the standard form,

$$b = 4, c = -5$$

 $(x + b/2)^2 = -(c - b^2/4)$
So,

$$[x + (4/2)]^{2} = -[-5 - (4^{2}/4)]$$
$$(x + 2)^{2} = 5 + 4$$
$$\Rightarrow (x + 2)^{2} = 9$$
$$\Rightarrow (x + 2) = \pm\sqrt{9}$$
$$\Rightarrow (x + 2) = \pm 3$$
$$\Rightarrow x + 2 = 3, x + 2 = -3$$
$$\Rightarrow x = 1, -5$$

Therefore, the roots of the given equation are 1 and -5.

Example 2: Find the roots of the quadratic equation $3x^2 - 5x + 2 = 0$ by completing the square.

Solution:

Given quadratic equation is:

$3x^2 - 5x + 2 = 0$

The given equation is not in the form to which we apply the method of completing squares, i.e. the coefficient of x^2 is not 1. To make it 1, we need to divide the whole equation with 3.

 $x^2 - 5/3 x + 2/3 = 0$

Comparing with the standard form,

$$b = -5/3; c = \frac{2}{3}$$

 $c - b^2/4 = \frac{2}{3} - [(-5/3)^2/4] = (2/3) - (25/36) = (24 - 25)/36 = -1/36$

Substituting these values in the equation $(x + b/2)^2 = -(c - b^2/4)$ we get,

$$\Rightarrow (x - 5/6)^2 = 1/36$$

 \Rightarrow (x - 5/6)= ± $\sqrt{(1/36)}$

 $\Rightarrow x - 5/6 = \pm 1/6$

 \Rightarrow x = 1, -2/3

Therefore, the roots of the given equation are 1 and $-\frac{2}{3}$.

Example 3: Find the roots of the quadratic equation by completing the square

 $x^2 + 6x = 40$

Solution:

 $(x+3)^2 = 49$

X=-3+7=4

X=-3-7=-10

Example 4:

 $x^2 + 10x + 4 = 15$

Solution:

 $x = 1, \qquad x = -11$

Check:

$x^2 + 10x + 4 = 15$	$x^2 + 10x + 4 = 15$
(1) ² + 10(1) + 4 ² = 15	$(-11)^2 + 10(-11) + 4 \stackrel{?}{=} 15$
1 + 10 + 4 ≟ 15	121 + 110 + 4 = 15
15 = 15 🗸	15 = 15 🗸

Example 5:

 $x^2 + 2x - 15 = 9$

Solution:

x = 4, x = -6

Example 6:

 $3x^2 - 12x - 15 = 0$

Solution:

x = 5, x = -1

Check:

<i>x</i> = 5	<i>x</i> = –1
$3x^2 - 12x - 15 = 0$	$3x^2 - 12x - 15 = 0$
3(<mark>5)</mark> ² – 12(<mark>5</mark>) – 15 ≟ 0	3(<mark>–1)²</mark> – 12(<mark>–1</mark>) – 15 ≟ 0
75 – 60 – 15 ≟ 0	3 + 12 − 15 ≟ 0
0 = 0 ✓	0 = 0 ✓

Example 7:

$$2x^2 - 3x = 20$$

Solution:

$$x=4, \qquad x=-\frac{5}{2}$$