Republic of Iraq
Ministry of Higher Education
Al-Mustaqbal University
Radiology Techniques Department
Second Stage \ Special Radiological Procedures-1

Lecture No. (9)

Magnetic Resonance of the Urinary Tract

By

Dr. Samer Adnan

Magnetic Resonance Urinary Tract

Indications

- 1. Local staging of prostatic cancer
- 2. Local staging of bladder cancer
- 3. Staging of pelvic lymph nodes
- 4. Renal mass

- 5. Screening of patients with <u>von Hippel–Lindau disease</u> or their relatives, or other genetic conditions
- 6. MR urography where i.v. or CT urography contraindicated
- 7. MR angiography: potential living related donors, suspected renal artery stenosis

Technique

Technique will be **tailored to the clinical indication**.

*MRI of the **abdomen** and **pelvis** can be **obtained to assess** retroperitoneal lymphadenopathy as part of the **staging investigations** for patients with **bladder** and **prostate cancer**, but CT is **often used for this purpose** with MRI reserved for local staging.

Magnetic Resonance Imaging of the Prostate

Technique/Example Protocol

- 1. *Patient supine. *Phased array body coil. *The best images will be obtained with an endorectal coil, but many authorities do not use these. *1.5T or 3T scanners are both used. *3T scanners afford better signal-to-noise ratio, *but may be subject to more artifacts—notably susceptibility.
- 2. *Antiperistaltic drugs (<u>hyoscine</u> butyl-bromide (<u>Buscopan</u>) or <u>glucagon</u> are recommended)
- 3. *T1W and T2W axial scans whole pelvis
- 4. *Thin-section (3–4 mm) *small field of view *T1-weighted spin echo (SE) scans in *axial plane *orthogonal* to the axis of the **prostate** to evaluate for <u>postbiopsy</u> haemorrhage
- 5. *Thin-section (3–4 mm) *small field of view *T2-weighted SE scans in* transverse (axial), *sagittal and *coronal planes orthogonal to the axis of the prostate.
- 6. *Multiparametric MRI—there is increasing use of the following functional studies:
- (a) *Diffusion weighted imaging b values 0, 100 and 800–1400 s mm-2 with apparent diffusion coefficient (ADC) map
- (b) *Dynamic contrast-enhanced (DCE) T1W imaging
- (c) MR spectroscopy—citrate, creatine, choline

Sig	Sigmoid color		
Rect	Reclum		
AC	Anal canal		
AM	Anal margin		
Pr	Prostate		
BI	Bladder		
Pub	Pubis		

 1 H-spectrum of normal prostate at 3.0T. Slight notching of the dominant citrate (Cit) peak at δ = 2.6 ppm is noted. Other resonances include choline (Cho, 3.2 ppm), creatine (Cr, 3.0 ppm), and polyamines (PA, 3.1 ppm)

¹H-MRS showing a normal spectrum on the right side of the prostate and cancer on the left. Note the decrease in citrate (Ci) and elevation of choline (Cho) in the cancerous side, with a Jung score = 5. Decrease in polyamines (PA) in cancer also allow better separation of the Cho and Cr peaks to be appreciated. (Modified from Sharma 2014, under CC BY license)

Magnetic Resonance Urography

Indications

- 1. To demonstrate the <u>collecting system</u>/determine <u>level of obstruction</u> in **a poorly functioning/obstructed kidney**
- 2. Urinary tract obstruction unrelated to <u>urolithiasis</u>. *Suspected <u>renal colic</u> from underlying calculus is better imaged with <u>CT KUB</u>.
- 3. Congenital anomalies
- 4. Renal transplant donor assessment (combined with MR angiography)

Technique

The two most common MR urographic techniques are:

- Static fluid-sensitive urography using heavily T2-weighted MRI techniques to visualize fluid-filled structures (equivalent to magnetic resonance cholangiopancreatography [MRCP])
- **excretory MR urography** using <u>T1</u>-weighted sequences **post gadolinium** enhancement:
- 1. *Patient <u>supine</u> *with an **empty bladder for comfort**. *If the bladder is of interest, a moderately full bladder may be preferred.
- 2. *Scout views are obtained.
- 3. *Static MR urography may be performed prior to excretory urography. Thick-slab, single-shot, fast-spin echo or a similar thin-section technique, e.g. half-Fourier rapid acquisition with relaxation enhancement; single-shot, fast-spin echo; single shot, turbo-spin echo.

- *(Breath-hold very fast spin echo (e.g. half Fourier acquisition single shot turbo spin echo [HASTE])
- *3D <u>respiratory triggered</u> sequences may be used to obtain thin section data sets that may be further postprocessed.
- 4. *Oral or i.v. hydration, compression or diuretics may be used to enhance collecting system distension.
- 5. *Excretory MR urography: a gadolinium-based contrast agent is administered <u>i.v.</u> using a *dose <u>of 0.1 mmol</u> gadolinium <u>kg-1</u> body weight.
- *The **collecting systems** are imaged during the **excretory phase** (10–20 min) using a breath-hold, 3D gradient echo, TI-weighted sequence.
- *Fat suppression will improve the conspicuity of the <u>ureters</u>.
- ➤ T2* effects from a high concentration of contrast agent may reduce the signal intensity of urine and potentially <a href="https://docs.org

Magnetic Resonance Imaging of Adrenals

Indications

Characterization of adrenal mass.

Technique

*Chemical shift imaging: based on a *high proportion of intracellular lipid causing alteration of the local magnetic environment within the voxel and hence resonant frequency of protons.

*Lipid-rich benign adenomas can be shown to <u>lose signal</u> on **opposed phase T1W** imaging compared with **in-phase studies** (MRI). This is highly specific. Alternatively, *unenhanced CT can be used to characterize an adrenal mass as malignant, or

*18-F fluorodeoxyglucose positron emission tomography (18-F FDG-PET) can be used to characterize an adrenal mass as malignant.

- Q1-The imaging technique is commonly used for excretory MR urography to demonstrate the collecting systems is
- A. 3D gradient echo, T1-weighted sequence
- B. 4D dual-echo, T2-weighted sequence
- C. Single-shot, turbo-spin echo
- D. Half-Fourier rapid acquisition with relaxation enhancement
- E. Diffusion weighted imaging and MR spectroscopy
- Q2-If the CT urography contraindicated, must be performed
- A. Plain film B. IVU C. PET D. MR urography E. None of the above
- Q3-Which of the following is a type of magnetic resonance imaging used for
- characterization of renal lesions
- A. MR prostate B. MR bladder C. MR urography D. MR adrenals E. None above
- Q4-In excretory MR urography, which of the following factors most improves the visualization of the ureters using a gadolinium-based contrast agent and a T1-weighted sequence?
- A. Administering a higher dose of the contrast agent
- B. Extending the scan duration beyond the excretory phase
- C. Switching to a fat-suppression technique
- D. Employing a breath-hold technique instead of free breathing
- E. Switching to a T2-weighted sequence
- Q5-What is the optimal timing of pre- and postcontrast T1 weighted imaging in MR urinary tract.
- A. Precontrast at 10 s and postcontrast at 50 S
- B. Precontrast at 20 s and postcontrast at 60 S
- C. Precontrast at 30s and postcontrast at 70 S
- D. Precontrast at 40 s and postcontrast at 80 S
- E. Precontrast at 50 s and postcontrast at 90 S

- Q6-MRI of the kidneys and upper abdomen generally includes all of the following except.
- A. T1 and T2 weighted sequences

B. Axial and coronal planes

C. With or without fat saturation

D. Pre- and postcontrast T2 weighted

- E. At 30 and 70 s
- Q7-What is the advantage of using a phased array body coil over an endorectal coil for MRI of the prostate?
- A. It provides higher spatial resolution and contrast
- B. It provides lower signal-to-noise ratio and artifacts
- C. It provides better patient comfort and compliance
- D. It provides faster scan time and coverage E. To enhance the contrast and brightness
- Q8-The three functional studies that are used in multiparametric MRI of the prostate are
- A. Diffusion weighted imaging, dynamic contrast-enhanced imaging, and MR spectroscopy
- B. Diffusion tensor imaging, dynamic susceptibility contrast imaging, and MR elastography
- C. Diffusion kurtosis imaging, dynamic perfusion imaging, and MR angiography
- D. Diffusion spectrum imaging, dynamic phase contrast imaging, and MR thermometry
- E. None of the above
- Q9-What MRI sequence is typically used to evaluate post-biopsy hemorrhage
- A. T1-weighted spin echo (SE) sequence
- B. T2-weighted spin echo (SE) sequence
- C. Diffusion weighted sequence
- D. Dynamic contrast-enhanced (DCE) T1W sequence
- E. Heavily T2-weighted sequence

Q10-Which imaging modality is commonly used for assessing retroperitoneal lymphadenopathy in the staging investigations of patients with bladder and prostate cancer ?						
A. MRI of the abdomen and pelvis						
B. CT scan of the abdomen and pelvis						
C. Ultrasound of the abdomen and pelvis						
D. PET-CT scan of the abdomen and pelvis						
E. X-ray of the abdomen and pelvis						
Q11-The indications MR urography include all the following except						
A. Urolithiasis		B. Urinary tract obstruction				
C. demonstrate the collecting system		D. Renal transplant donor assessment				
E. Congenital anomalies						
Q12-In MRI of the prostate, a thin-section small field of view T1-weighted spin echo (SE) scans in axial plane orthogonal to the axis of the prostate is used to evaluate for post biopsy hemorrhage						
A. 3-4 mm	B. 4-5 mm	C. 0.6-1 mm	D. 5-6 mm	E. 1-2 cm		
Q13-The functional study included in multipara metric MRI prostate is						
A. T2	B. SPIR	C. DWI	D. TI	E. FLAIR		
Q14-What is the purpose of using Antiperistaltic drugs before MRI of the prostate						
A. To reduce the bowel motion and distortion						
B. To increase the bowel distension and opacification						
C. To enhance the bowel contrast and differentiation						
D. To improve the bowel function and clearance						
E. None of the above						

- Q15-The MRI sequence that is most commonly used to visualize the fluid-filled structures of the entire urinary tract (kidneys, ureters, bladder) is
- A. T2-weighted spin echo (SE) sequence
- B. Static fluid-sensitive urography using heavily T2-weighted sequence
- C. 3D gradient echo, 3D gradient echo, T1-weighted sequence
- D. T1-weighted sequences post gadolinium enhancement
- E. T1-weighted sequences post gadolinium enhancement
- Q16-What are the alternative imaging modalities that can be used to characterize an adrenal mass as malignant
- A. Unenhanced CT and 18-F FDG-PET
- B. Contrast-enhanced CT and 18-F FDG-PET
- C. Unenhanced CT and 18-F DOPA-PET
- D. Contrast-enhanced CT and 18-F DOPA-PET
- E. Unenhanced CT and 18-F FLT-PET
- Q17-What is the characteristic finding on opposed phase T1-weighted imaging in chemical shift imaging for lipid-rich benign adenomas
- A. Increased signal intensity compared to in-phase studies
- B. Decreased signal intensity compared to in-phase studies
- C. No change in signal intensity compared to in-phase studies
- D. Loss of signal intensity in adjacent tissues
- E. Loss of signal intensity in the lipid-rich benign adenoma itself
- Q18-In MR urography, the collecting systems are imaged during the excretory phase (10-20 min) using a
- A. Breath-hold
- B. 3D gradient echo
- C. T1-weighted sequence
- D. Fat suppression will improve the conspicuity of the ureters
- E. All of the above