

Laplace Transforms In The MATLAB

1. Basic Laplace Transforms

Here are the Laplace transforms of some fundamental functions:

• Constant Function:

$$\mathcal{L}\{1\}=rac{1}{s}$$

• Power Function t^n (where n is a non-negative integer):

 $\mathcal{L}\{t^n\}=rac{n!}{s^{n+1}}$

• Exponential Function e^{at} :

$$\mathcal{L}\{e^{at}\} = rac{1}{s-a}$$

(where a is a constant).

• Sine Function $\sin(at)$:

$$\mathcal{L}\{\sin(at)\} = rac{a}{s^2+a^2}$$

• Cosine Function $\cos(at)$:

$$\mathcal{L}\{\cos(at)\}=rac{s}{s^2+a^2}$$

2. Properties of the Laplace Transform

Linearity (Superposition Property):

The Laplace transform is linear, which means

 $\mathcal{L}\{c_1f(t)+c_2g(t)\}=c_1\mathcal{L}\{f(t)\}+c_2\mathcal{L}\{g(t)\}$

where c_1 and c_2 are constants.

Time-Shift Property:

If f(t) has a Laplace transform F(s), then:

$$\mathcal{L}\{f(t-a)u(t-a)\}=e^{-as}F(s)$$

where u(t-a) is the Heaviside step function.

Differentiation in Time Domain:

If f(t)f(t)f(t) has a Laplace transform F(s)F(s)F(s), then

Frequency-Shift Property:

If f(t) has a Laplace transform F(s), then:

$$\mathcal{L}\{e^{at}f(t)\} = F(s-a)$$

Scaling Property:

If f(t) has a Laplace transform F(s), then:

$$\mathcal{L}\{f(at)\} = rac{1}{|a|}F\left(rac{s}{a}
ight)$$

where a is a constant.

Ministry of Higher Education and Scientific Research – Iraq AL-Mustaqbal University Department of Electrical Engineering techniques Application computer

$$\mathcal{L}\left\{rac{d^n f(t)}{dt^n}
ight\} = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \cdots - f^{(n-1)}(0)$$

where $f^{(n)}(0)$ denotes the n-th derivative of f(t) evaluated at t=0.

Integration in Time Domain:

If f(t) has a Laplace transform F(s), then:

$$\mathcal{L}\left\{\int_{0}^{t}f(au)d au
ight\}=rac{1}{s}F(s)$$

Evaluating Laplace Transform by Using Matlab

1.	Evaluate Laplace transform of the function $f(t) = 3t + 2e^{3t}$	
Step	-1	
First	declare t as a variable:	
>> sy	ms t	
Step	-2	
Defin	the function <i>f</i>	

Practice Problems:

- (a) 5-3t (b) $7t^3-2\sin 3t$ (c) $3-2t+4\cos 2t$ (d) $\cosh 3t$ (e) $\sinh 2t$ (f) $5e^{-2t}+3-2\cos 2t$ (g) $4te^{-2t}$ (h) $2e^{-3t}\sin 2t$ (i) t^2e^{-4t} (j) $6t^3-3t^2+4t-2$
- (k) $2\cos 3t + 5\sin 3t$ (l) $t\cos 2t$

>> syms t >> f=3*t+2*exp(3*t)

f =

3*t + 2*exp(3*t)

>> laplace(f)

ans =

2/(s - 3) + 3/s^2

>> syms t >> f=5-3*t

f =

5 - 3*t

>> laplage(f)

ans =

(3*((5*s)/3 - 1))/s^2