

Ministry of Higher Education and Scientific Research – Iraq AL-Mustaqbal University Department of Electrical Engineering techniques

Stage 2

Lecture 2

Lecture: matrix

Assist lecture: Salwan Saud

Mathematical Processes on Matrices in MATLAB

Introduction

MATLAB (Matrix Laboratory) is a powerful tool for numerical computing, particularly well-suited for matrix operations. This lecture will cover fundamental mathematical processes on matrices in MATLAB, including addition, multiplication, transposition, and inversion.

1. Creating Matrices in MATLAB

In MATLAB, matrices are defined using square brackets [], with elements separated by spaces (or commas) in a row and semicolons; to separate rows.

A = [1 2; 3 4]; % 2x2 matrix B = [5, 6; 7, 8]; % Another 2x2 matrix

2. Matrix Addition and Subtraction

Matrix addition and subtraction in MATLAB are performed element-wise.

C = A + B; % Matrix addition D = A - B; % Matrix subtraction

Example Output:

6 8 10 12

10 1

-4 -4 -4 -4

3. Scalar Multiplication

Multiplying a matrix by a scalar multiplies each element by that scalar.

k = 3;E = k * A; % Multiply each element of A by 3

Example Output:

4. Matrix Multiplication

Matrix multiplication follows the rule of dot products between rows and columns.

F = A * B; % Standard matrix multiplication

Example Output:

F = 19 2243 50

5. Element-wise Multiplication (Hadamard Product)

To perform element-wise multiplication, use the. * operator.

G = A .* B; % Element-wise multiplication

Example Output:

 $G = 5 \quad 12 \\ 21 \quad 32$

6. Matrix Transposition

The transpose of a matrix swaps its rows and columns.

H = A'; % Transpose of A

Example Output:

3

4

H = 1 2

7. Matrix Inversion

A square matrix has an inverse if its determinant is non-zero.

if det(A) ~= 0 A_inv = inv(A); % Inverse of A end

Example Output:

A_inv = -2 1 1.5 -0.5

8. Determinant of a Matrix

The determinant helps determine if a matrix is invertible.

 $det_A = det(A);$

Example Output:

det A = -2

Entering a matrix

Note that the use of semicolons (;) here is different from their use mentioned earlier to suppress output or to write multiple commands in a single line. Once we have entered the matrix, it is automatically stored and remembered in the *Workspace*. We can refer to it simply as matrix A. We can then view a particular element in a matrix by specifying its location. We write,

>> A(2,1)

an =

s 4

A(2,1) is an element located in the second row and flrst column. Its value is 4

Colon operator in a matrix

The colon operator can also be used to pick out a certain row or column. For example, the statement A(m:n,k:l specifles rows m to n and column k to l. Subscript expressions refer to portions of a matrix. For example,

>> A(2,:)

ans =

456

is the second row elements of A.

The colon operator can also be used to extract a sub-matrix from a matrix A. >> A(:,2:3)

ans =

23

56

80

A(:,2:3) is a sub-matrix with the last two columns of A.

A row or a column of a matrix can be deleted by setting it to a *null* vector, []. >> A(:,2)=[]

ans =

13

46

70

Deleting row or column

To delete a row or column of a matrix, use the *empty vector* operator, [].

>> A(3,:) = []

A =

123

456

Third row of matrix A is now deleted. To restore the third row, we use a technique for

creating a matrix

```
>> A = [A(1,:);A(2,:);[7 8 0]]
A =
```

123

456

780

Matrix A is now restored to its original form