

Subject: Differential mathematics Lecturer: Dr. Hasan Muwafaq Gheni

### 1. Equation of a Straight Line

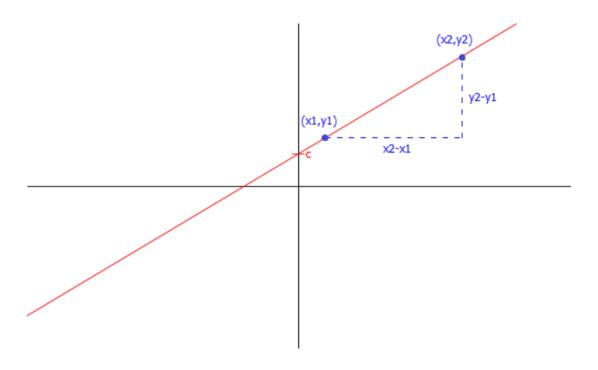
The equation of a straight line is

$$y = mx + c$$

m is the gradient and c is the height at which the line crosses the y-axis, also known as the y-intercept.

The gradient m is the slope of the line - the amount by which the y-coordinate increases in proportion to the x-coordinate. If you have points (x1, y1) and (x2, y2) on the line, the gradient is

$$m=rac{y_2-y_1}{x_2-x_1}$$





Subject: Differential mathematics Lecturer: Dr. Hasan Muwafaq Gheni

If you know one point (x1, y1) on the line as well as its gradient m, the equation of the line is

$$(y-y_1)=m(x-x_1)$$

Example 1: Find the equation of the line with gradient -2 that passes through the point (3, -4).

#### **Solution:**

Put m=-2,  $x_1=3$  and  $y_1=-4$  straight into the formula  $y-y_1=m(x-x_1)$ .

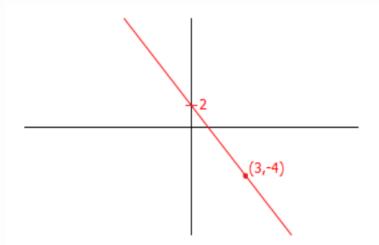
$$y - y_1 = m(x - x_1)$$

$$y + 4 = -2(x - 3)$$

Expand the brackets and simplify.

$$y + 4 = -2x + 6$$

$$y=-2x+2$$





Subject: Differential mathematics Lecturer: Dr. Hasan Muwafaq Gheni

# Example 2: Find the equation of the straight line through the points (-5, 7) and (1, 3)

#### **Solution:**

First, find the gradient by substituting the coordinates  $x_1=-5$ ,  $y_1=7$ ,  $x_2=1$  and  $y_2=3$  into the formula for the gradient:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{3 - 7}{1 - (-5)}$$

$$= \frac{-4}{6}$$

$$= -\frac{2}{3}$$

Choose either point and put into the formula  $y-y_1=m(x-x_1)$ :

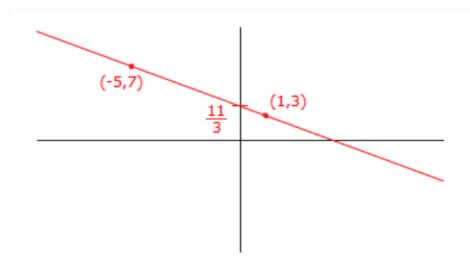
$$y-y_1 = m(x-x_1) \ y-7 = -rac{2}{3}(x-(-5))$$

Expand the brackets and simplify.



Subject: Differential mathematics Lecturer: Dr. Hasan Muwafaq Gheni

$$y-7=-rac{2}{3}x-rac{10}{3}$$
  $y=-rac{2}{3}x+rac{11}{3}$ 



### 2. Trigonometric Functions

There are six basic trigonometric functions used in Trigonometry. These functions are trigonometric ratios. The six basic trigonometric functions are sine function, cosine function, secant function, co-secant function, tangent function, and cotangent function.

 $\sin \theta = Perpendicular/Hypotenuse$ 

 $\cos \theta = Base/Hypotenuse$ 

 $tan \theta = Perpendicular/Base$ 

 $\sec \theta = Hypotenuse/Base$ 

 $cosec \theta = Hypotenuse/Perpendicular$ 

Perpendicular

B

Base



Subject: Differential mathematics Lecturer: Dr. Hasan Muwafaq Gheni

The six trig functions and how

they relate to each other.

$$\cos(x) \qquad \qquad \sin(x) \\ \tan(x) = \frac{\sin(x)}{\cos(x)} \qquad \qquad \cot(x) = \frac{\cos(x)}{\sin(x)} = \frac{1}{\tan(x)} \\ \sec(x) = \frac{1}{\cos(x)} \qquad \qquad \csc(x) = \frac{1}{\sin(x)}$$

The trigonometric functions have a domain  $\theta$ , which is in degrees or radians. Some of the principal values of  $\theta$  for the different trigonometric functions are presented below in a table.

| θ       | 0°             | 30°                  | 45°                  | 60°                  | 90°            | 180°           | 270°           | 360°           |
|---------|----------------|----------------------|----------------------|----------------------|----------------|----------------|----------------|----------------|
| sin θ   | 0              | 1/2                  | $\frac{1}{\sqrt{2}}$ | $\sqrt{\frac{3}{2}}$ | 1              | 0              | -1             | 0              |
| cos θ   | 1              | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | 1/2                  | 0              | -1             | 0              | 1              |
| tan θ   | 0              | <u>1</u><br>√3       | 1                    | √3                   | Not<br>Defined | 0              | Not<br>Defined | 0              |
| cosec θ | Not<br>Defined | 2                    | √2                   | $\frac{2}{\sqrt{3}}$ | 1              | Not<br>Defined | -1             | Not<br>Defined |
| sec θ   | 1              | $\frac{2}{\sqrt{3}}$ | √2                   | 2                    | Not<br>Defined | -1             | Not<br>Defined | 1              |
| cot θ   | Not<br>Defined | √3                   | 1                    | <u>1</u><br>√3       | 0              | Not<br>Defined | 0              | Not<br>Defined |



Subject: Differential mathematics Lecturer: Dr. Hasan Muwafaq Gheni

### 3. Domain and Range

One of the more important ideas about functions is that of the domain and range of a function. for the domain we need to avoid division by zero, square roots of negative numbers, logarithms of zero and logarithms of negative numbers. The range of a function is simply the set of all possible values that a function can take.

**Example:** Find the domain and range of each of the following functions.

(a) 
$$f(x) = 5x - 3$$

**(b)** 
$$g(t) = \sqrt{4-7t}$$

(c) 
$$h(x) = -2x^2 + 12x + 5$$

(d) 
$$f(z) = |z - 6| - 3$$

**(e)** 
$$g(x) = 8$$

#### **Solution:**

(a) 
$$f(x) = 5x - 3$$

Range:  $(-\infty, \infty)$ 

Domain:  $-\infty < x < \infty$  or  $(-\infty, \infty)$ 



Subject: Differential mathematics Lecturer: Dr. Hasan Muwafaq Gheni

**(b)** 
$$g(t) = \sqrt{4-7t}$$

Range:  $[0, \infty)$ 

$$4 - 7t \ge 0$$

$$4 \ge 7t$$

$$\frac{4}{7} \ge t \qquad \Rightarrow \qquad t \le \frac{4}{7}$$

The domain is then,

(c) 
$$h(x) = -2x^2 + 12x + 5$$

Domain:  $-\infty < x < \infty$  or  $(-\infty, \infty)$ 

$$x = -\frac{12}{2(-2)} = 3$$
  $y = h(3) = -2(3)^2 + 12(3) + 5 = 23$ 

Range:  $(-\infty, 23]$ 

(d) 
$$f(z) = |z - 6| - 3$$

Range:  $[-3, \infty)$ 



Subject: Differential mathematics Lecturer: Dr. Hasan Muwafaq Gheni

**(e)** 
$$g(x) = 8$$

Range: 8

### $\mathbf{H.W}$

Find the domain of each of the following functions.

(a) 
$$f(x) = \frac{x-4}{x^2-2x-15}$$

**(b)** 
$$g(t) = \sqrt{6 + t - t^2}$$

(c) 
$$h(x) = \frac{x}{\sqrt{x^2 - 9}}$$