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1 GENERAL INTRODUCTION

1 General Introduction

Number Theory is a branch of mathematics that deals with the properties and relationships of

integers. It is one of the oldest and most fundamental areas of mathematics, often referred to as

the Queen of Mathematics. The study of numbers has been central to mathematics since ancient

times, with applications in cryptography, coding theory, and computer science.

1.1 Historical Background

The study of numbers dates back to ancient civilizations, with contributions from:

• The Babylonians and Egyptians, who used number systems for practical calculations.

• The Greeks, especially Euclid, who developed fundamental theorems on divisibility and

prime numbers.

• Pierre de Fermat, known for Fermat’s Little Theorem and his famous Last Theorem.

• Leonhard Euler, who expanded number theory through Euler’s totient function.

• Carl Friedrich Gauss, who introduced modular arithmetic and developed the theory of

congruences.

1.2 Applications of Number Theory

Although Number Theory was historically considered pure mathematics, it has found significant

applications in modern areas, including:

• Cryptography: RSA encryption and elliptic curve cryptography rely on properties of

prime numbers and modular arithmetic.

• Computer Science: Hash functions, random number generation, and error detection

codes.

• Coding Theory: Applications in data transmission and error correction.
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Number Theory is a rich and fascinating field that explores the properties of integers and their

relationships. With deep theoretical foundations and modern applications, it continues to be an

essential part of mathematical research and technological advancements.

1.3 The Beauty of Numbers

Sum of Odd Numbers Forms Perfect Squares

1 = 1

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

1 + 3 + 5 + 7 + 9 = 25

1 + 3 + 5 + 7 + 9 + 11 = 36

1 + 3 + 5 + 7 + 9 + 11 + 13 = 49

Palindromic Multiplication

1 · 1 = 1

11 · 11 = 121

111 · 111 = 12321

1111 · 1111 = 1234321

11111 · 11111 = 123454321

111111 · 111111 = 12345654321

1111111 · 1111111 = 1234567654321

11111111 · 11111111 = 123456787654321

111111111 · 111111111 = 12345678987654321
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Factorial values

1! = 1

2! = 1× 2 = 2

3! = 1× 2× 3 = 6

4! = 1× 2× 3× 4 = 24

5! = 1× 2× 3× 4× 5 = 120

6! = 1× 2× 3× 4× 5× 6 = 720

7! = 1× 2× 3× 4× 5× 6× 7 = 5, 040

8! = 1× 2× 3× 4× 5× 6× 7× 8 = 40, 320

9! = 1× 2× 3× 4× 5× 6× 7× 8× 9 = 362, 880

10! = 1× 2× 3× 4× 5× 6× 7× 8× 9× 10 = 3, 628, 800

1 = 1 (1 = 1)

1 + 2 + 1 = 2 + 2 (121 ∼ 22)

1 + 2 + 3 + 2 + 1 = 3 + 3 + 3 (12321 ∼ 333)

1 + 2 + 3 + 4 + 3 + 2 + 1 = 4 + 4 + 4 + 4 (1234321 ∼ 4444)

Pascal’s Triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
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2 Algebra Preliminaries

2.1 Sets

Definition 2.1. A set is a well-defined collection of distinct objects, called elements, enclosed

in curly brackets {}.

Formal Definition: A set S is defined as S = {a, b, c, . . . }, where each element is unique

and well-defined.

Examples of Sets

• Finite Set: A = {1, 2, 3, 4, 5}

• Infinite Set: B = {1, 2, 3, . . .}

• Empty Set (Null Set): ∅ = {} (A set with no elements)

Common Sets:

N - Natural numbers, Z - Integers, Q - Rational numbers, R - Real numbers, C - Complex

numbers.

Relations and Membership:

• x ∈ A (Element of A), y /∈ B (Not an element of B)

• A ⊆ B (A is a Subset of B), A ⊂ B (A is a Proper Subset of B), A = B (Equality)

2.2 Integer and Natural Numbers

The set Z of all integers, consists of all positive and negative integers as well as 0. Thus Z is the

set given by

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.

While the set of all positive integers (Natural Numbers), denoted by N, is defined by

N = {1, 2, 3, . . . }.

2024- 2025 | MOHAMMED JABBAR 4



CYBERSECURITY DEPARTMENT
NUMBER THEORY

2 ALGEBRA PRELIMINARIES

2.2.1 Basic Properties of Natural Numbers

Addition in N

• Closure: For any a, b ∈ N, the sum a+ b is also in N.

• Associativity: (a+ b) + c = a+ (b+ c) for all a, b, c ∈ N.

• Commutativity: a+ b = b+ a for all a, b ∈ N.

• Cancellation Law: For any a, b, c ∈ N, if a+ c = b+ c, then a = b.

Multiplication in N

• Closure: For any a, b ∈ N, the product a · b is also in N.

• Associativity: (a · b) · c = a · (b · c) for all a, b, c ∈ N.

• Commutativity: a · b = b · a for all a, b ∈ N.

• Identity Element: 1 serves as the multiplicative identity since a · 1 = a for every a ∈ N.

• Cancellation Law: For any a, b, c ∈ N, if a · c = b · c, then a = b.

• Distributivity: Multiplication is distributive over addition: For any a, b, c ∈ N,

a(b+ c) = ab+ ac.

Subtraction and Division in N

• Subtraction: The operation of subtraction is not always closed in N. For example, 2− 5

is not a natural number.

• Division: Similarly, division is not generally closed in N; for instance, 3 ÷ 2 does not

yield a natural number.
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2.2.2 Basic Properties of Integer Numbers

Addition in Z

• Closure: For any a, b ∈ Z, the sum a+ b is also in Z.

• Associativity: (a+ b) + c = a+ (b+ c) for all a, b, c ∈ Z.

• Commutativity: a+ b = b+ a for all a, b ∈ Z.

• Identity Element: 0 is the additive identity since a+ 0 = a for every a ∈ Z.

• Inverses: Every integer a has an inverse −a such that a+ (−a) = 0.

Subtraction in Z

Subtraction is always defined in Z because for any a, b ∈ Z, the difference a− b = a+ (−b) is

also an integer.

Multiplication in Z

• Closure: For any a, b ∈ Z, the product a · b is in Z.

• Associativity: (a · b) · c = a · (b · c) for all a, b, c ∈ Z.

• Commutativity: a · b = b · a for all a, b ∈ Z.

• Identity Element: 1 is the multiplicative identity since a · 1 = a for every a ∈ Z.

• Cancellation Law: For any a, b, c ∈ Z, if a · c = b · c, then a = b.

• Distributivity: Multiplication is distributive over addition: For any a, b, c ∈ Z,

a(b+ c) = ab+ ac.
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Division in Z

Division is not a closed operation in Z. For example, 3÷ 2 is not an integer.

Important Theorem

Theorem 2.1. Let a, b ∈ Z, Then:

1. a · 0 = 0 · a = 0

2. (−a)b = a(−b) = −ab

3. (−a)(−b) = ab

Proof. 1. 0 + 0 = 0 (Identity element in Z)

⇒ (0 + 0)a = 0a ⇒ 0a+ 0a = 0a

⇒ 0a+ 0a+ (−0a) = 0a+ (−0a) (inverse in Z)

⇒ 0a = 0

Similarly a0 = 0

2. b+ (−b) = 0 (inverse in Z)

⇒ a(b+ (−b)) = a0 = 0 (From (1))

⇒ ab+ a(−b) = ab+ (−ab) ⇒ a(−b) = −ab

3. (−a)(−b) = ab

In (2), replace a by (−a) ⇒ (−a)(−b) = −((−a)b) = −(−ab) = ab

2.2.3 Laws of Exponents

For n,m ∈ N and a, b ∈ Z, we have the following exponentiation rules:

1. Product Rule: am · an = am+n

2. Quotient Rule: am

an
= am−n, for m ≥ n, a ̸= 0

3. Power of a Power: (am)n = am·n

4. Power of a Product: (ab)n = an · bn
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2.2.4 Properties of Inequalities

For a, b, c ∈ Z, the following properties hold:

1. Transitivity: If a < b and b < c, then a < c.

2. Addition Property: If a < b, then a+ c < b+ c for any c ∈ Z.

3. Multiplication by a Positive Number: If a < b and c > 0, then ac < bc.

4. Multiplication by a Negative Number: If a < b and c < 0, then ac > bc (the inequality

sign reverses).

2.3 Even and Odd Numbers

Even Numbers

An integer n is called even if it is divisible by 2. That is, n is even if there exists an integer k

such that:

n = 2k.

Examples: 2 = 2(1), 4 = 2(2), 10 = 2(5).

Odd Numbers

An integer n is called odd if it is not divisible by 2. Formally, n is odd if it can be expressed as:

n = 2k + 1,

where k is an integer.

Examples:

• 1 = 2(0) + 1

• 3 = 2(1) + 1

• 7 = 2(3) + 1
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3 Divisibility and Prime Numbers

3.1 Divisibility
Important Definition

Definition 3.1 (Divides). For integers a and b, we say that a divides b (denoted a | b) if

there exists an integer k such that:

b = a · k.

For example:

3 | 15 since 15 = 3× 5.

Remark 3.1. If a does not divide a, we write a ∤ b.

Properties of Divisibility

For integers a, b, c:

• If a | b and b | c, then a | c (Transitivity).

• If a | b and a | c, then a | (b+ c) and a | (b− c).

• If a | b, then a | kb for any integer k.

Theorem 3.1. For integers a, b, c, the following hold:

1. a | 0, 1 | a, a | a.

2. a | 1 if and only if a = ±1.

3. If a | b and c | d, then ac | bd.

4. a | b and b | a if and only if a = ±b.

5. If a | b and b ̸= 0, then |a| ≤ |b|.

6. If a | b and a | c, then a | (bx+ cy) for arbitrary integers x and y.
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Division Algorithm

Theorem 3.2. Let a, b be integers with a ̸= 0. Then there exist unique integers q and r

such that:

b = aq + r, 0 ≤ r < |a|.

where q is called the quotient, and r is called the remainder.

Remark 3.2. Divisibility Condition: a | b ⇐⇒ r = 0

Theorem 3.3. For any integer a ̸= 0 and any integer b, there exist unique integers q (quotient)

and r (remainder) such that:

b = aq + r, where 0 ≤ r < |a|. (1)

Proof. Let (q1, r1), (q2, r2) ∈ Z, such that

b = aq1 + r1, where 0 ≤ r1 < |a|, (2)

b = aq2 + r2, where 0 ≤ r2 < |a|, (3)

From (2) and (3) b = aq1 + r1 = aq2 + r2 ⇒ aq1 − aq2 = r2 − r1.

a(q1 − q2) = r2 − r1. (4)

Since −|a| < −r1 ≤ 0, 0 ≤ r2 < |a|, then

−|a| < r2 − r1 < |a|. (5)

But from (4) r2 − r1 = a(q1 − q2) ⇒ r2 − r1 = 0 ⇒ r2 = r1

Since a ̸= 0, we must have q1 − q2 = 0 ⇒ q1 = q2.
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Example 3.1. Prove that

1. 4 | 20

2. 5 ∤ 23

3. Every even integer n is divisible by 2

4. Every odd integer n is not divisible by 2 H.W

Sol. 1. By Division Algorithm, there exists integers q, r such that:

20 = 4q + r.

We check:

20 = 4× 5.

Since q = 5, and r = 0, then

4 | 20.

2. By Division Algorithm, there exists integers q, r such that:

23 = 5q + r.

We check:

23 = 5× 4 + 3.

Since q = 5, and r = 3, then

5 ∤ 23.

3. By Division Algorithm, there exists integers q, r such that:

n = 2q + r.
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The only possible values for r are:

r = 0 or r = 1.

Case 1: If r = 0

Then

n = 2q ⇒ 2 | n.

Case 1: If r = 1

Then

n = 2q + 1 ⇒ n is odd integer C!

∴ 2 | n

3.2 Prime Numbers
Prime Number

Definition 3.2. A prime number is an integer p > 1 that has exactly two distinct positive

divisors: 1 and itself.

Formally, p is prime if:

p > 1 and ∀d | p, d = 1, or d = p.

Examples: 2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

Definition 3.3. A composite number is an integer greater than 1 that is not prime, meaning it

has at least one divisor other than 1 and itself.

Examples: 4, 6, 8, 9, 10, 12, 14, 15, . . .
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Lemma 3.1. If n is composite, then there exist integers a and b, such that:

n = ab, 1 < a < n, 1 < b < n.

Prime Numbers

2, 3, 5,

7, 11,

13, 17,

19, 23,

29, 31,

37, 41,

43, 47,

53, 59,

61, 67,

71, 73,

79, 83,

89, 97,

101,

103,

107,

109,

113,

127,

131,

137,

139,

149,

151,

157,

163,

167,

173,

179,

181,

191,

193,

197,

199,

211,

223,

227,

229,

233,

239,

241,

251,

257,

263,

269,

271,

277,

281,

283,

293,

307,

311,

313,

317,

331,

337,

347,

349,

353,

359,

367,

373,

379,

383,

389,

397,

401,

409,

419,

421,

431,

433,

439,

443,

449,

457,

461,

463,

467,

479,

487,

491,

499,

503,

509,

521,

523,

541,

547,

557,

563,

569,

571,

577,

587,

593,

599,

601,

607,

613,

617,

619,

631,

641,

643,

647,

653,

659,

661,

673,

677,

683,

691,

701,

709,

719,

727,

733,

739,

743,

751,

757,

761,

769,

773,

787,

797,

809,

811,

821,

823,

827,

829,

839,

853,

857,

859,

863,

877,

881,

883,

887,

907,

911,

919,

929,

937,

941,

947,

953,

967,

971,

977,

983,

991,

997,

1009,

1013,

1019,

1021,

1031,

1033,

1039,

1049,

1051,

1061,

1063,

1069,

1087,

1091,

1093,

1097,

1103,

1109,

1117,

1123,

1129,

1151,

1153,

1163,

1171,

1181,

1187,

1193,

1201,

1213,

1217,

1223,

1229,

1231,

1237,

1249,

1259,

1277,

1279,

1283,

1289,

1291,

1297,

1301,

1303,

1307,

1319,

1321,

1327,

1361,

1367,

1373,

1381,

1399,

1409,

1423,

1427,

1429,

1433,

1439,

1447,

1451,

1453,

1459,

1471
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3.3 Exercises of Divisibility and Prime Numbers

Exercises

1. Prove that if x is even, then x2 + 2x+ 4 is divisible by 4.

2. Suppose a | b and a | c. Prove the following:

(a) a | b+ c.

(b) a | b− c.

(c) a | mb for all m ∈ Z.

3. Prove that if a | b and b | a, then a = b or a = −b.

4. Show that 5 | 25,−19 | 38,−5 ∤ 27 and 2 | 98.

5. List all prime numbers less than 30 and briefly justify why each is prime.

6. Find the prime factorization of 84.

2024- 2025 | MOHAMMED JABBAR 14



CYBERSECURITY DEPARTMENT
NUMBER THEORY

4 GREAT COMMON DIVISOR AND EUCLIDEAN ALGORITHM

4 Great Common Divisor and Euclidean Algorithm

4.1 Great Common Divisor
Greatest Common Divisor (GCD)

Definition 4.1. The GCD of two integers a and b, denoted as gcd(a, b), is the largest

positive integer that divides both a and b without leaving a remainder.

gcd(a, b) = max{d ∈ Z : d | a and d | b}.

For example, gcd(1, 2) = 1, gcd(6, 27) = 3, and for any a, gcd(0, a) = gcd(a, 0) = a.

Remark 4.1. unless both a and b are 0 in which case gcd(0, 0) = 0.

Definition 4.2 (Co-Prime Numbers). Two integers a and b are co-prime (or relatively prime)

if the only positive integer that divides both of them is 1; equivalently, their greatest common

divisor is 1:

gcd(a, b) = 1.

For examples: (8, 15), (7, 9), (13, 27) are co-prime pairs.

Lemma 4.1. For any integers a,b and n, we have

gcd(a, b) = gcd(b, a) = gcd(±a,±b) = gcd(a, b− a) = gcd(a, b+ a) = gcd(a, b− na).

Lemma 4.2. For any integers a, b, and n, we have

gcd(an, bn) = |n| · gcd(a, b).

Lemma 4.3. Suppose a, b, and n are integers such that n | a and n | b. Then

n | gcd(a, b).
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Theorem 4.1. For any integers a and b, there exist integers x and y such that

d = gcd(a, b) = ax+ by.

Theorem 4.2. If gcd(a, b) = d, then gcd
(
a
d
, b
d

)
= 1.

Proof. (1). Assume that k is a positive common divisor such that k | a/d and k | b/d.

⇒ ad = km and bd = kn, n,m ∈ Z

⇒ a = kmd and b = knd.

Hence, kd | a and kd | b. Also, kd | d. However, d is the GCD of a and b, so kd ≤ d.

Since kd | d ⇒ kd = d ⇒ k = 1.

Thus, the only common divisor of a/d and b/d is 1.

∴ gcd
(
a

d
,
b

d

)
= 1

Proof. (2). d = ax+ by ⇒ 1 = a
d
x+ b

d
y ⇒ gcd

(
a
d
, b
d

)
= 1.

4.2 Euclidean Algorithm

Lemma 4.4. Let a, b ∈ Z, such that a = bq + r for some integers q, r. Then

gcd(a, b) = gcd(b, r).

Proof. Let d = gcd(a, b) ⇒ d | a, d | b. Since a = bq + r, we have r = a− bq.

⇒ d | a− bq, which means d | r. Thus, d is a common divisor of b and r, so d ≤ gcd(b, r).

Conversely, let d′ = gcd(b, r). Since d′ | b, d′ | r ⇒ d′ | a = bq + r

Thus, d′ is a common divisor of a and b, so d′ ≤ gcd(a, b). We have d′ = d
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Euclidean algorithm

Theorem 4.3. Let a, b be nonzero integers. Repeatedly apply the division algorithm as

follows:

a = bq1 + r1, 0 ≤ r1 < |b|

b = r1q2 + r2, 0 ≤ r2 < r1

r1 = r2q3 + r3, 0 ≤ r3 < r2

...

Continue this process until some remainder rn = 0, at which point the greatest common

divisor is given by:

gcd(a, b) = rn−1.

Example 4.1. Let a = 75 and b = 45. We apply the Euclidean algorithm:

75 = 45× 1 + 30

45 = 30× 1 + 15

30 = 15× 2 + 0

Since the remainder is now 0, we conclude that:

gcd(75, 45) = 15.
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Example 4.2. Let a = 517 and b = 89. We apply the Euclidean algorithm:

517 = 89× 5 + 72

89 = 72× 1 + 17

72 = 17× 4 + 4

17 = 4× 4 + 1

4 = 1× 4 + 0

Since the remainder is now 0, we conclude that:

gcd(517, 89) = 1.

Least Common Multiple (LCM)

Definition 4.3. The Least Common Multiple (LCM) of two integers a and b is the

smallest positive integer that is divisible by both a and b.

LCM(a, b) =
|a× b|
gcd(a, b)

Properties of LCM

• LCM(a, b)× gcd(a, b) = |a× b|

• LCM(a, b) ≥ max(a, b)

• If a divides b, then LCM(a, b) = b.
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Example

For a = 12 and b = 18:

gcd(12, 18) = 6

LCM(12, 18) =
12× 18

6
= 36

Thus, LCM(12, 18) = 36.

4.3 Exercises of Great Common Divisor and Euclidean Algorithm
Exercises

1. Let a and b be two positive even integers. Prove that gcd(a, b) = 2 gcd(a/2, b/2).

2. By Euclidean Algorithm to find

(a) gcd(12378, 3054).

(b) gcd(51, 288).

(c) gcd(7544, 115).

3. Show that if a and b are positive integers where a is even and b is odd, then

gcd(a, b) = gcd(a/2, b)

4. Let a, b, c ∈ Z such that a | bc and gcd(a, c) = 1. Prove that a | b.

5. If a | b and a > 0, prove that gcd(a, b) = a.

6. If n ∈ Z prove that n and n+ 1 co-prime i.e gcd(n, n+ 1) = 1.

7. Find lcm(15, 20) and lcm(51, 288)

8. Let a, b ∈ Z, if lcm(a, b) = ab, prove that gcd(a, b) = 1.
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5 Prime Numbers

We have previously been introduced to prime numbers. In this section, we will explore these

numbers in greater depth and study their special Sequences.

Number of primes infinite

Theorem 5.1. There are infinitely many prime numbers.

Proof. Let the number of primes is finite

p1, p2, p3, . . . , pn.

and let

N = p1p2p3 . . . pn + 1.

There are two cases: either N is a prime number or a composite number.

Case 1: If N prime C! with (the number of primes is finite).

Case 2: If N composite, then p | N .

But p1, p2, . . . , pn ∤ N , because leaves a remainder of 1 C! with N composite.

⇒ N is prime C! with (the number of primes is finite).

Therefore, there are infinitely many prime numbers.

Sequence of Nn = (p1p2p3 . . . pn) + 1

3 = 2 + 1

7 = 2 · 3 + 1

31 = 2 · 3 · 5 + 1

211 = 2 · 3 · 5 · 7 + 1

2311 = 2 · 3 · 5 · 7 · 11 + 1

where pi represents the first n prime numbers.
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Example 5.1. From Nn = (p1p2p3 . . . pn) + 1, find N4, N7 and N9.

Sol.
N4 = (2 · 3 · 5 · 7) + 1

= 210 + 1 = 211

N7 = (2 · 3 · 5 · 7 · 11 · 13 · 17) + 1

= 510510 + 1 = 510511

The Fundamental Theorem of Arithmetic

Theorem 5.2. Every integer n > 1 can be written uniquely in the form

n = p1p2 · · · ps

where p1, p2, . . . , ps are primes such that p1 ≤ p2 ≤ · · · ≤ ps.

Remark 5.1. If n = p1p2 · · · ps where each pi is prime, we call this the prime factorization

of n.

The number 1 is neither prime nor composite.

Ans. 1 is not composite because there are no integers a, b > 1 such that 1 = ab.

Now, let 1 is prime number and n composite ∋ n = pq, p, q primes. Then

n = p× q

n = 1× p× q

n = 1× 1× p× q

n = 1× 1× 1× p× q

...

n = 1× 1× · · · × 1× p× q C! with unique product of primes

∴ 1 is not prime number.

Theorem 5.3. Let p be a prime and a, b ∈ N. If p | ab, then p | a or p | b.
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Proof. If p | a we are done.

If p ∤ a ⇒ gcd(p, a) = 1 ⇒ gcd(bp, ab) = b.

Since p | pb, p | ab, then p | gcd(bp, ab) ⇒ p | b gcd(p, a) ⇒ p | b · 1 ⇒ p | b.

Prime Divisor

Lemma 5.1. If n > 1 is composite, then n has a prime divisor p ≤
√
n.

Example 5.2. n = 97. Note that
√
97 <

√
100 = 10. The primes less than 10 are 2, 3, 5, and 7.

5.1 Lists of primes by type

Cousin Primes

Cousin Primes are pairs of prime numbers that differ by 4. In other words, two primes p and q

are cousin primes if:

q = p+ 4 and both p and q are primes.

Examples:

1. For p = 3:

q = 3 + 4 = 7

Both 3 and 7 are prime numbers. So, (3, 7) is a pair of Cousin Primes.

2. For p = 7:

q = 7 + 4 = 11

Both 7 and 11 are prime numbers. So, (7, 11) is a pair of Cousin Primes.

3. For p = 13:

q = 13 + 4 = 17

Both 13 and 17 are prime numbers. So, (13, 17) is a pair of Cousin Primes.
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Cullen Primes

A Cullen Prime is a prime number of the form:

Cn = n · 2n + 1

where n is a positive integer and Cn is prime.

Examples:

1. For n = 1:

C1 = 1 · 21 + 1 = 3

Since 3 is prime, C1 = 3 is a Cullen Prime.

2. For n = 2:

C2 = 2 · 22 + 1 = 9

Since 9 is not prime, C2 = 9 is not a Cullen prime.

3. For n = 3:

C3 = 3 · 23 + 1 = 25

Since 25 is not prime, C3 = 25 is not a Cullen prime.

4. For n = 5:

C5 = 5 · 25 + 1 = 161

Since 161 is not prime, C5 = 161 is not a Cullen prime.

5. A known large Cullen prime is:

C141 = 141 · 2141 + 1
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5.2 Exercises of Prime Numbers

Exercises

1. Let p and q be prime numbers. Suppose that the polynomial

x2 − px+ q = 0

has an integer root. Find all possible values of p and q.

2. From Nn = (p1p2p3 . . . pn) + 1, find

(a) N1 to N3.

(b) N1 ∗N2 + 1

3. Let p be a prime and a, k be positive integers. If p | ak, then pk | ak.

4. Write prime between 72 and 111.

5. Let q1, q2, . . . , qm be prime numbers. If a prime p divides their product,

p | q1q2 · · · qm,

Then p must be equal to one of q1, q2, . . . , qm, i.e., p = qk for some k.
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6 Mersenne Primes
Mersenne Primes

Definition 6.1. A number Mp = 2p − 1 is called a Mersenne number. If Mp is prime,

then it is called a Mersenne prime.

For example:

M2 = 22 − 1 = 3, M3 = 23 − 1 = 7, M5 = 25 − 1 = 31, M7 = 27 − 1 = 127

Remark 6.1. Necessary Condition: If Mp is prime, then p must be prime. (However, the con-

verse is not true; e.g., when p = 11, M11 = 211 − 1 = 2047 = 23× 89 is composite.)

Example 6.1. – For p = 2:

M2 = 22 − 1 = 3 (prime).

– For p = 3:

M3 = 23 − 1 = 7 (prime).

– For p = 5:

M5 = 25 − 1 = 31 (prime).

– For p = 7:

M7 = 27 − 1 = 127 (prime).

– For p = 11:

M11 = 211 − 1 = 2047 (composite, since 2047 = 23× 89).

Theorem 6.1. If n is a positive composite number, then 2n − 1 is a composite number.

Example 6.2. The numbers 4, 6, and 9 are composite. Accordingly, 24 − 1 = 15, 26 − 1 = 63,

and 29 − 1 = 511 = 7× 73 are composite.
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Lemma 6.1. For any integer n ≥ 1, we have the factorization

xn − 1 = (x− 1)
(
xn−1 + xn−2 + · · ·+ x+ 1

)
.

Lemma 6.2. Let a > 1 and n > 1. If an+1 is prime, then a is even and n = 2k for some k ≥ 1.

Proof. We first prove that n must be even.

Step 1: Suppose n is odd.

Assume that n is odd:

Since

an − 1 = (a− 1)(an−1 + an−2 + · · ·+ a+ 1).

Now, we replace a with −a:

(−a)n − 1 = (−a− 1)((−a)n + (−a)n−1 + (−a)n−2 + · · ·+ (−a) + 1).

⇒ (−a)n = −an, (−a)n−1 = an−1, (−a)n−2 = −an−2, . . . .

⇒ −(an + 1) = −(a+ 1)(an−1 − an−2 + · · · − a+ 1).

⇒ an + 1 = (a+ 1)(an−1 − an−2 + · · · − a+ 1).

For n ≥ 2, we have: 1 < a+ 1 < an + 1.

Thus, if n is odd, the number an + 1 is divisible by a + 1, and it is not prime. Hence, n

cannot be odd, then n even.

Now, since n even, let n = 2s · t, where t is odd. If an + 1 is prime, then:

an + 1 = a2
s·t + 1.

But an + 1 cannot be prime if t ≥ 2 and t is odd. Therefore, t = 1, which gives n = 2s.

Thus, n = 2k for some integer k ≥ 1.
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7 The Group, Ring, and Field

7.1 Groups

Definition 7.1. LetG be a non-empty set. A function fromG×G intoG. That is, ∗ : G×G → G

is a binary operation if and only if

a ∗ b ∈ G, ∀a, b ∈ G.

Example 7.1. The ordinary addition is a binary operation on Z, Q, and R. This is because:

a+ b ∈ Z, ∀a, b ∈ Z,

a+ b ∈ Q, ∀a, b ∈ Q,

a+ b ∈ R, ∀a, b ∈ R.

The ordinary multiplication is also a binary operation on Z, Q, and R.

Definition 7.2. A semigroup is a pair (G, ∗) in which G is a non-empty set and ∗ is a binary

operation on G that satisfies the associative law. i.e.

(G, ∗) is a semigroup if and only if the following conditions hold:

• G ̸= ∅,

• ∗ is a binary operation on G,

• For all a, b, c ∈ G, the operation satisfies the associative law:

(a ∗ b) ∗ c = a ∗ (b ∗ c).

Example 7.2. (Z,+), (Z, ·), (R,+),(R, ·), (Q,+) , (Q, ·) are semigroup.
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Definition of Group

Definition 7.3. A pair (G, ∗) is called a group if the following conditions are satisfied:

1. Closure: G is closed under the operation ∗, i.e., for all a, b ∈ G, we have a∗ b ∈ G.

2. Associativity: The operation ∗ is associative on G, i.e., for all a, b, c ∈ G, we have

(a ∗ b) ∗ c = a ∗ (b ∗ c).

3. Identity element: There exists an element e ∈ G such that for all a ∈ G, we have

a ∗ e = e ∗ a = a.

4. Inverse element: For every element a ∈ G, there exists an element a−1 ∈ G such

that

a ∗ a−1 = a−1 ∗ a = e.

Remark 7.1. 1. The pair (G, ∗) is a group if and only if (G, ∗) is a semigroup with an identity

element in which each element of G has an inverse.

2. Every group is a semigroup, but the converse is not true. For example, (N,+) is a semi-

group but not a group because there does not exist an inverse element for every a ∈ N,

i.e., for some a ∈ N, there is no element a−1 ∈ N.

Definition 7.4. A group (G, ∗) is called a commutative group (or abelian group) if and

only if

a ∗ b = b ∗ a for all a, b ∈ G.

Example 7.3. The pairs (Z,+), (Q,+), and (R,+) are commutative groups.
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Example 7.4. Given: Let G = Z and define the operation ∗ on G by:

a ∗ b = a+ b+ 2, ∀a, b ∈ Z.

We will show that (G, ∗) satisfies the group axioms.

Step 1: Closure

By definition of ∗, for any a, b ∈ Z,

a ∗ b = a+ b+ 2 ∈ Z.

Thus, G is closed under ∗.

Step 2: Associativity

To check associativity, we need to verify:

(a ∗ b) ∗ c = a ∗ (b ∗ c), ∀a, b, c ∈ Z.

Computing both sides:

Left-hand side:

(a ∗ b) ∗ c = (a+ b+ 2) ∗ c = (a+ b+ 2) + c+ 2 = a+ b+ c+ 4.

Right-hand side:

a ∗ (b ∗ c) = a ∗ (b+ c+ 2) = a+ (b+ c+ 2) + 2 = a+ b+ c+ 4.

Since both sides are equal, ∗ is associative.
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Step 3: Identity Element

Let e be the identity element, meaning:

a ∗ e = a, ∀a ∈ Z.

Using the operation definition:

a ∗ e = a+ e+ 2 = a.

Solving for e,

a+ e+ 2 = a ⇒ e+ 2 = 0 ⇒ e = −2.

Thus, the identity element is e = −2.

Step 4: Inverse Element

For each a ∈ Z, we need an element a′ ∈ Z such that:

a ∗ a′ = e.

That is,

a+ a′ + 2 = −2.

Solving for a′,

a′ = −a− 4.

Since a′ ∈ Z for all a ∈ Z, every element has an inverse.

Since closure, associativity, identity, and inverses are satisfied, (G, ∗) is a group.

Theorem 7.1. The identity element of a group (G, ∗) is unique.

Proof. Let has two identity elements, say e and e′.
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By the definition of the identity element, we have:

a ∗ e = e ∗ a = a, ∀a ∈ G.

a ∗ e′ = e′ ∗ a = a, ∀a ∈ G.

Since e′ is identity, then

e′ ∗ e = e ∗ e′ = e. (6)

Also, e ,

e ∗ e′ = e′ ∗ e = e′. (7)

From (1) and (2), we have

e′ = e.

Thus, the identity element in G is unique.

7.2 Rings
Definition Ring

Definition 7.5. A ring (R,+, ·) is a non-empty set R with two operations (+) and (·),

such that:

1. (R,+) is an Abelian Group.

2. (R, ·) is a semigroup.

3. Left and Right Distributive Laws Hold

• a · (b+ c) = a · b+ a · c for all a, b, c ∈ R.

• (a+ b) · c = a · c+ b · c for all a, b, c ∈ R.

Example 7.5. The pairs (Z,+, ·), (Q,+, ·), and (R,+, ·) are rings.
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Commutative Ring

Definition 7.6. A ring (R, ·) is said to be commutative ring if

a · b = b · a, ∀a, b ∈ R.

Unity of Ring

Definition 7.7. A ring (R, ·) is said to be ring with identity if there exists an element

e ∈ R, such that

a · e = e · a = a, ∀a ∈ R.

e is called identity of R or unity of R

Example 7.6. The pairs (Z,+, ·), (Q,+, ·), and (R,+, ·) are commutative rings with identity.

7.3 Field
Definition Field

Definition 7.8. A ring (F,+, ·) is a non-empty set F with two operations (+) and (·), such

that:

1. (F,+) is an Abelian Group.

2. (F, ·) is an Abelian Group.

3. Left and Right Distributive Laws Hold

• a · (b+ c) = a · b+ a · c for all a, b, c ∈ F .

• (a+ b) · c = a · c+ b · c for all a, b, c ∈ F .

Example 7.7. The pair (R,+, ·) is Field.
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7.4 Exercises of The Group, Ring, and Field

Exercises

1. Prove that in a group (G, ∗), each element has exactly one inverse.

2. If (G, ∗) is a group, then for all a, b ∈ G,

(a ∗ b)−1 = b−1 ∗ a−1.

3. If (G, ∗) is a commutative group, then for all a, b ∈ G,

(a ∗ b)−1 = a−1 ∗ b−1.

4. Consider the set G of all diagonal matrices of the form

G =


a 0

0 b

 : a, b ∈ R, a, b ̸= 0


Prove that (G, ·) is abelian group.

5. Consider the set R of all diagonal matrices of the form

R =


2n 0

0 2m

 : 2n, 2m ∈ R, n,m ∈ Z


Is (R,+·) a commutative ring.

6. If ∀a, b ∈ G, a ∗ b = a+ b+ ab. Is (G, ∗) a group?

7. If ∀a, b ∈ G, a ∗ b = a2 + b2. Is (G, ∗) a ring?

8. If ∀a, b ∈ G, a⊕ b = a+ b− 1 and a⊗ b = a+ b− ab. Is (G, ∗, ◦) a ring?
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8 Theory of Congruence’s

Defintion of Congruent

Definition 8.1. Let m be a positive integer. We say that a is congruent to b modulo m

denoted as a ≡ b (mod m), if m | (a− b), where a and b are integers.

Example 8.1. We want to check if a ≡ b (mod m)

1. 25 ≡ 1 (mod 4) since 4 | 25− 1.

2. 25 ̸≡ 2 (mod 4) since 4 ∤ 25− 2.

3. 1 ≡ −3 (mod 4) since 4 | 1− (−3).

4. If n is even n ≡ 0 (mod 2).

5. If n is odd n ≡ 1 (mod 2).

Theorem 8.1. If a and b are integers, then a ≡ b (mod m) if and only if there is an integer k

such that a = b+ km.

Proof. (⇒): Suppose a ≡ b (mod m) ⇒ m | (a− b) ⇒ a− b = km ⇒ a = b+ km

(⇐) suppose that there exists an integer k such that a = b+ km ⇒ a− b = km ⇒ m | (a− b).

Then

a ≡ b (mod m)

Theorem 8.2. For m > 0 and for all integers a and b:

a ≡ b (mod m) ⇐⇒ a (mod m) = b mod m.

a (mod m) = r where r is the remainder given by the Division Algorithm when m is

divided by m.
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Example 8.2. It is 11 PM, and you want to sleep for 8 hours. To determine when to set your

alarm, you need to compute the time 8 hours after 11 PM.

First, we add 8 hours to 11 PM:

11 + 8 = 19

Since time is typically measured on a 12-hour clock, we need to take the result modulo 12:

19 (mod 12) = 7

Thus, you should set your alarm for 7AM.

Example 8.3. To what least residue (mod 11) is each of 23, 29, 31, 37, and 41 congruent?

Sol. We will compute the remainder when each number is divided by 11.

23÷ 11 = 2 remainder 1 ⇒ 23 ≡ 1 (mod 11)

29÷ 11 = 2 remainder 7 ⇒ 29 ≡ 7 (mod 11)

31÷ 11 = 2 remainder 9 ⇒ 31 ≡ 9 (mod 11)

37÷ 11 = 3 remainder 4 ⇒ 37 ≡ 4 (mod 11)

41÷ 11 = 3 remainder 8 ⇒ 41 ≡ 8 (mod 11)

Thus, the least residues modulo 11 are:

23 ≡ 1 (mod 11), 29 ≡ 7 (mod 11), 31 ≡ 9 (mod 11), 37 ≡ 4 (mod 11), 41 ≡ 8 (mod 11).

Theorem 8.3. Let m be a positive integer. If a ≡ b (mod m) and c ≡ d (mod m), then:

a+ c ≡ b+ d (mod m).
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Proof.

a ≡ b (mod m) ⇐⇒ m | (a− b) ⇐⇒ (a− b) = k1 ·m for some integer k1.

c ≡ d (mod m) ⇐⇒ m | (c− d) ⇐⇒ (c− d) = k2 ·m for some integer k2.

Now, consider the expression (a+ c)− (b+ d):

(a+ c)− (b+ d) = (a− b) + (c− d) = k1 ·m+ k2 ·m = m · (k1 + k2).

Since m | [(a+ c)− (b+ d)], by the equivalent definition of congruence, we conclude that:

a+ c ≡ b+ d (mod m).

Example 8.4.

10001 + 20000005 + 3004 ≡? (mod 10)

Sol. First, we calculate each number modulo 10:

10001 ≡ 1 (mod 10)

20000005 ≡ 5 (mod 10)

3004 ≡ 4 (mod 10)

Now, add them together modulo 10:

10001 + 20000005 + 3004 ≡ 1 + 5 + 4 (mod 10) ≡ 10 (mod 10) ≡ 0 (mod 10)
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Theorem 8.4. Let m be a positive integer. If a ≡ b (mod m) and c ≡ d (mod m), then:

ac ≡ bd (mod m).

Proof.

a ≡ b (mod m) ⇐⇒ m | (a− b) ⇐⇒ (a− b) = k1 ·m for some integer k1.

c ≡ d (mod m) ⇐⇒ m | (c− d) ⇐⇒ (c− d) = k2 ·m for some integer k2.

Now, consider the expression ac− bd:

ac− bd = ac− ad+ ad− bd = a(c− d) + d(a− b).

We can factor out m from both terms:

ac− bd = a ·m · k2 + d ·m · k1 = m · (a · k2 + d · k1).

Since m | (ac− bd), by the equivalent definition of congruence, we conclude that:

ac ≡ bd (mod m).

Example 8.5. Compute 10001× 20000005 mod 13.

Sol. First, compute each number modulo 13:

10001 ≡ 4 (mod 13)

20000005 ≡ 12 (mod 13)
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Now, multiply these values:

10001× 20000005 ≡ 4× 12 (mod 13)

≡ 48 (mod 13).

Since 48÷ 13 = 3 with a remainder of 9, we conclude:

48 ≡ 9 (mod 13).

Thus,

10001× 20000005 ≡ 9 (mod 13).

8.1 Exercises of Theory of Congruence’s
Exercises

1. If a ≡ b (mod m) and n | m, prove that a ≡ b (mod n).

2. Let m be a positive integer. If a ≡ b (mod m) and c ≡ d (mod m), prove that

a+ c ≡ b+ d (mod m).

3. Find 46, 59, 61, 77, and 58 (mod 39).

4. Find the least nonnegative residue modulo 13

(a) 22 mod 13

(b) −1 mod 13

(c) −100 mod 13

5. What time does a clock read: (1). 29 hours after it reads 11 o’clock? (2) 50 hours

before it reads 6 o’clock?
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9 Congruent Modulo
Properties of Congruence Modulom

Theorem 9.1. Let m ∈ Z. For all a, b, c ∈ Z, the following properties hold:

1. Reflexivity: a ≡ a (mod m).

2. Symmetry: If a ≡ b (mod m), then b ≡ a (mod m).

3. Transitivity: If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

Proof. We prove each property separately.

1. Reflexivity: By definition, a ≡ b (mod m) ⇒ m | a − b. Setting b = a, we have

m | a− a = 0 ⇒ m | 0. Therefore, a ≡ a (mod m).

2. Symmetry: H.W

3. Transitivity: If a ≡ b (mod m) and b ≡ c (mod m), then we have:

m | (a− b) and m | (b− c).

This means there exist integers k1 and k2 such that:

a− b = k1m, b− c = k2m.

Adding these two equations:

(a− b) + (b− c) = k1m+ k2m.

Simplifying, we obtain:

a− c = (k1 + k2)m.

Since m divides a− c, it follows that a ≡ c (mod m).
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Theorem 9.2. If a ≡ b (mod n), then for any positive integer k ∈ Z+,

ak ≡ bk (mod n).

Proof. We proceed by induction on k.

Base Case (k = 1): If k = 1, then a1 = a and b1 = b, so a ≡ b (mod n).

Inductive Step: Assume that for some k = m, the statement holds:

am ≡ bm (mod n).

We need to show that it holds for k = m+ 1, i.e.,

am+1 ≡ bm+1 (mod n).

By the induction hypothesis,

am ≡ bm (mod n).

Multiplying both sides by a, we get:

am · a ≡ bm · a (mod n).

Since a ≡ b (mod n), replacing a with b in the right-hand term gives:

bm · a ≡ bm · b (mod n).

Thus,

am+1 ≡ bm+1 (mod n).

By induction, the theorem holds for all k ∈ Z+. □
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Theorem 9.3. Let m be a positive integer and a, b be integers. Then,

(a+ b) mod m = ((a mod m) + (b mod m)) mod m.

Proof. Clearly, we have:

a ≡ a (mod m), and b ≡ b (mod m).

Thus, adding both congruences,

a+ b ≡ (a mod m) + (b mod m) (mod m).

Theorem 9.4. Let m be a positive integer and a, b be integers. Then,

(a · b) mod m = ((a mod m) · (b mod m)) mod m.

Proof: H.W

Example 9.1. What is 20082008 mod 3?

Sol.

20082008 = (2008× 2008× · · · × 2008)︸ ︷︷ ︸
(2008 times)

mod 3

Using the property of modular arithmetic:

= ((2008 mod 3)× · · · × (2008 mod 3))︸ ︷︷ ︸
(2008 times)

mod 3

Since 2008 mod 3 = 1, we have:

= (1× 1× · · · × 1) mod 3
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Thus,

= 12008 mod 3 = 1 mod 3 = 1.

So, 20082008 mod 3 = 1.

Example 9.2. Find the remainder when 1! + 2! + · · ·+ 100! is divided by 15.

Sol. Notice that when k ≥ 5, k! ≡ 0 (mod 15). Therefore,

1! + 2! + · · ·+ 100! ≡ 1! + 2! + 3! + 4! + 0 + · · ·+ 0 (mod 15).

Now, compute the factorials modulo 15 for 1!, 2!, 3!, and 4!:

1! = 1, 2! = 2, 3! = 6, 4! = 24.

Thus, we have:

1! + 2! + 3! + 4! ≡ 1 + 2 + 6 + 24 (mod 15).

Simplifying the sum:

1 + 2 + 6 + 24 = 33.

Now, take modulo 15:

33 mod 15 = 3.

Therefore, the remainder when the given sum is divided by 15 is 3.

Example 9.3. Find the remainder when 1653 is divided by 7.

Sol. First, reduce the base to its least residue modulo 7:

16 ≡ 2 (mod 7).

So,

1653 ≡ 253 (mod 7).

2024- 2025 | MOHAMMED JABBAR 42



CYBERSECURITY DEPARTMENT
NUMBER THEORY

9 CONGRUENT MODULO

we can write 53 as 53 = 3× 17 + 2, so:

253 = 23·17+2 = (23)17 · 22.

Since 23 ≡ 1 (mod 7), we have:

(23)17 ≡ 117 ≡ 1 (mod 7).

Therefore:

253 ≡ 1 · 22 ≡ 4 (mod 7).

Thus, 1653 ≡ 4 (mod 7), by the transitive property.

Therefore, the remainder when 1653 is divided by 7 is 4.

9.1 Exercises of Congruent modulo
Exercises

1. If a ≡ b (mod m), prove that b ≡ a (mod m).

2. Let m be a positive integer and a, b be integers. Prove that,

(a · b) mod m = ((a mod m) · (b mod m)) mod m.

3. Find the remainder when 3247 is divided by 17.

4. Find the value of each of the following:

(a) 232 mod 7.

(b) 1035 mod 7.

(c) 335 mod 7.

5. If a ≡ 4 (mod 7) and b ≡ 5 (mod 7), what is a+b mod 7? What is a×b mod 7?
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10 Divisibility Tests

Elementary school children know how to tell if a number is even, or divisible by 5, by looking

at the least significant digit.

Theorem 10.1. If a number a has the decimal representation

a = an−110
n−1 + an−210

n−2 + · · ·+ a110 + a0

then:

1. a mod 2 = a0 mod 2

2. a mod 5 = a0 mod 5

Proof. Consider the polynomial function:

f(x) = an−1x
n−1 + · · ·+ a1x+ a0.

Note that 10 ≡ 0 (mod 2). So

an−110
n−1 + · · ·+ a110 + a0 ≡ an−10

n−1 + · · ·+ a10 + a0 (mod 2).

That is,

a ≡ a0 (mod 2).

This proves item (1).

Similarly, since 10 ≡ 0 (mod 5), the proof of item (2) follows in the same manner.

Example 10.1. Thus, the number 1457 is odd because 7 is odd:

1457 mod 2 = 7 mod 2 = 1.
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And on division by 5, it leaves a remainder of:

1457 mod 5 = 7 mod 5 = 2.

Theorem 10.2. Let

a = an−110
n−1 + an−210

n−2 + · · ·+ a110 + a0

be the decimal representation of a. Then:

1. a mod 3 = (an−1 + · · ·+ a0) mod 3.

2. a mod 9 = (an−1 + · · ·+ a0) mod 9.

3. a mod 11 = (a0 − a1 + a2 − a3 + . . . ) mod 11.

Proof. Note that 10 ≡ 1 (mod 3).

an−110
n−1 + · · ·+ a110 + a0 ≡ an−11

n−1 + · · ·+ a11 + a0 (mod 3).

Thus,

a ≡ an−1 + · · ·+ a1 + a0 (mod 3).

This proves item (1). Similarly, since 10 ≡ 1 (mod 9), the proof of item (2) follows the same

steps.

For item (3), note that 10 ≡ −1 (mod 11), so:

an−110
n−1 + · · ·+ a110 + a0 ≡ an−1(−1)n−1 + · · ·+ a1(−1) + a0 (mod 11).

That is,

a ≡ a0 − a1 + a2 − a3 + . . . (mod 11).
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Example 10.2. Consider the number 1457. We calculate its remainder modulo 3, 9, and 11.

Modulo 3:

1457 mod 3 = (1 + 4 + 5 + 7) mod 3 = 17 mod 3 = 8 mod 3 = 2.

Modulo 9:

1457 mod 9 = (1 + 4 + 5 + 7) mod 9 = 17 mod 9 = 8 mod 9 = 8.

Modulo 11:

1457 mod 11 = (7− 5 + 4− 1) mod 11 = 5 mod 11 = 5.

Thus, the least nonnegative residues are:

1457 ≡ 2 (mod 3), 1457 ≡ 8 (mod 9), 1457 ≡ 5 (mod 11).

Remark 10.1.

m | a ⇐⇒ a mod m = 0

Corollary 10.1. Let a = an−110
n−1 + an−210

n−2 + · · ·+ a110 + a0. Then:

1. 2 | a ⇐⇒ a0 = 0, 2, 4, 6, or 8.

2. 5 | a ⇐⇒ a0 = 0 or 5.

3. 3 | a ⇐⇒ 3 | (a0 + a1 + · · ·+ an−1).

4. 9 | a ⇐⇒ 9 | (a0 + a1 + · · ·+ an−1).

5. 11 | a ⇐⇒ 11 | (a0 − a1 + a2 − a3 + . . . ).
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Theorem 10.3. Let a = ar10
r + · · ·+ a210

2 + a110+ a0 be the decimal representation, so that

we write a as the sequence arar−1 . . . a1a0. Then:

1. 7 | a ⇐⇒ 7 | (ar . . . a1 − 2a0).

2. 13 | a ⇐⇒ 13 | (ar . . . a1 − 9a0),

where ar . . . a1 is the sequence representing a−a0
10

.

Example 10.3. We can test whether 7 divides 2481:

7 | 2481 ⇐⇒ 7 | (248− 2) ⇐⇒ 7 | 246 ⇐⇒ 7 | (24− 12) ⇐⇒ 7 | 12.

Since 7 ∤ 12, we conclude that 7 ∤ 2481.

Example 10.4. The number 12987 is divisible by 13 because:

13 | 12987 ⇐⇒ 13 | (1298− 63) ⇐⇒ 13 | 1235 ⇐⇒ 13 | (123− 45) ⇐⇒ 13 | 78.

And since 13× 6 = 78, we conclude that 12987 is divisible by 13.

10.1 Exercises of Divisibility Tests
Exercises

1. Let a = 18726132117057. Find a mod m for m = 2, 3, 5, 9, and 11.

2. Determine which of the following are divisible by 7:

(a) 6994 (b) 6993

3. Let a = anan−1 · · · a1a0 be the decimal representation of a. Prove the following:

(a) a mod 10 = a0.

(b) a mod 100 = a1a0.

(c) a mod 1000 = a2a1a0.
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11 More Properties of Congruences
The Inverse of aModulom

Theorem 11.1. Let m ≥ 2. If a and m are relatively prime (gcd(a,m) = 1), then there

exists a unique integer a−1 such that

aa−1 ≡ 1 (mod m) and 0 < a−1 < m.

Proof. Since gcd(a,m) = 1. Then there exist integers s and t such that

as+mt = 1. ⇒ as− 1 = m(−t),

⇒ m | (as− 1) ⇒ as ≡ 1 (mod m). Thus, a−1 = s mod m satisfies 0 < a∗ < m and

we have:

aa−1 ≡ 1 (mod m).

To prove uniqueness, Let there exists an integer c such that ac ≡ 1 (mod m) and 0 <

c < m. From this, we have:

ac ≡ aa−1 (mod m) ⇒ c ≡ a−1 (mod m).

Proving the uniqueness.

Example 11.1. Letm = 15 and a = 2. We find the integer a−1 such that a ·a−1 ≡ 1 (mod 15).

2 · 0 ̸≡ 1 (mod 15), 2 · 1 ̸≡ 1 (mod 15), 2 · 2 ̸≡ 1 (mod 15),

2 · 3 ̸≡ 1 (mod 15), 2 · 4 ̸≡ 1 (mod 15), 2 · 5 ̸≡ 1 (mod 15),

2 · 6 ̸≡ 1 (mod 15), 2 · 7 ̸≡ 1 (mod 15), 2 · 8 ≡ 1 (mod 15),

because 15 | (16− 1). Thus, we can take a− = 8.

Remark 11.1. We call a−1 the inverse of a modulo m.
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Theorem 11.2. Let m > 0. If ab ≡ 1 (mod m), then both a and b are relatively prime to m,

i.e., gcd(a,m) = 1 and gcd(b,m) = 1.

Corollary 11.1. A number a has an inverse modulom if and only if a andm are relatively

prime, i.e., gcd(a,m) = 1.

Theorem 11.3. Let m > 0. If gcd(c,m) = 1, then ca ≡ cb (mod m) implies a ≡ b (mod m).

Theorem 11.4. If c > 0 and m > 0, then

a ≡ b (mod m) ⇐⇒ ca ≡ cb (mod cm).

Theorem 11.5. If m > 0 and a ≡ b (mod m), then

gcd(a,m) = gcd(b,m).

11.1 Finding Modular Inverses Using the Extended Euclidean Algorithm

Given an integer a and a modulus m, the modular inverse of a modulo m is an integer x such

that:

ax ≡ 1 (mod m) (8)

The modular inverse exists if and only if gcd(a,m) = 1. We use the Extended Euclidean

Algorithm to compute it.

Example 11.2. Find the inverse of 7 modulo 20.

Sol. We apply the Euclidean algorithm:

20 = 2× 7 + 6

7 = 1× 6 + 1

6 = 6× 1 + 0
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Since gcd(7, 20) = 1, an inverse exists.

Now, we work backward:

1 = 7− 1× 6

= 7− 1(20− 2× 7)

= 7− 20 + 2× 7

= 3× 7− 1× 20

Thus, 7−1 ≡ 3 (mod 20).

Example 11.3. Find the inverse of 11 modulo 26.

Sol. Using the Euclidean algorithm:

26 = 2× 11 + 4

11 = 2× 4 + 3

4 = 1× 3 + 1

3 = 3× 1 + 0

Since gcd(11, 26) = 1, an inverse exists.

Working backward:

1 = 4− 1× 3

= 4− 1(11− 2× 4)

= 3× 4− 1× 11

= 3(26− 2× 11)− 1× 11

= 3× 26− 7× 11

Thus, 11−1 ≡ −7 ≡ 19 (mod 26).
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Example 11.4. Find the inverse of 17 modulo 43

Sol. Using the Euclidean algorithm:

43 = 2× 17 + 9

17 = 1× 9 + 8

9 = 1× 8 + 1

8 = 8× 1 + 0

Since gcd(17, 43) = 1, an inverse exists.

Working backward:

1 = 9− 1× 8

= 9− 1(17− 1× 9)

= 2× 9− 1× 17

= 2(43− 2× 17)− 1× 17

= 2× 43− 5× 17

Thus, 17−1 ≡ −5 ≡ 38 (mod 43).

11.2 Exercises of More Properties of Congruences
Exercises

1. Show that the inverse of 2 modulo 7 is not the inverse of 2 modulo 15.

2. Let m > 0. If ab ≡ 1 (mod m), then both a and b are relatively prime to m.

3. If c > 0 and m > 0, then a ≡ b (mod m) ⇐⇒ ca ≡ cb (mod cm).

4. If there exists a−1 find for each following

(a) 11−1 mod 43, (b) 29−1 mod 78, (c) 6−1 mod 19.
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12 Residue Classes

Inmodular arithmetic, a residue class is a set of integers that are congruent to each other modulo

a given number. When working with congruences, these residue classes help us group numbers

that share certain properties under a modulo operation.

Defintion Residue Class of a modulo m

Definition 12.1. Let m > 0 be given. For each integer a, we define

[a]m = ā = {x : x ≡ a (mod m)}.

In other words, [a]m or ā is the set of all integers that are congruent to a modulo m. We

call [a]m the residue class of a modulo m. Some people also call [a]m the congruence

class or equivalence class of a modulo m.

Example 12.1. Consider m = 5 and look at the residue class of 2 mod 5. We are looking for

all integers that leave the same remainder as 2 when divided by 5. These integers are:

{. . . ,−13,−8,−3, 2, 7, 12, 17, . . .}

Thus, the residue class of 2 modulo 5 is:

2̄ = [2]5 = {. . . ,−13,−8,−3, 2, 7, 12, 17, . . .}

Similarly, the residue class of 3 mod 5 would be:

3̄ = [3]5 = {. . . ,−7,−2, 3, 8, 13, 18, . . .}
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Theorem 12.1. For m > 0, we have

ā = [a]m = {mq + a | q ∈ Z}.

Proof.

x ∈ [a]m ⇐⇒ x ≡ a (mod m) ⇐⇒ m | (x− a) ⇐⇒ x− a = mq for some q ∈ Z

⇐⇒ x = mq + a for some q ∈ Z.

Theorem 12.2. For a given modulus m > 0, we have:

[a]m = [b]m ⇐⇒ a ≡ b (mod m).

Proof. “⇒” Assume [a] = [b]. Since a ≡ a (mod m), we have a ∈ [a]. Since [a] = [b], we

have a ∈ [b]. By the definition of [b], this gives a ≡ b (mod m).

“⇐” Assume a ≡ b (mod m). We must prove that the sets [a] and [b].

Let x ∈ [a]. Then x ≡ a (mod m). Since a ≡ b (mod m), by transitivity, x ≡ b (mod m),

so x ∈ [b].

Conversely, if x ∈ [b], then x ≡ b (mod m). By symmetry, since a ≡ b (mod m), we also

have b ≡ a (mod m). Thus, by transitivity, x ≡ a (mod m), and so x ∈ [a].

This proves that [a] = [b].

Distinct Residue Classes modulo m

Theorem 12.3. Given m > 0, there are exactly m distinct residue classes modulo m,

namely,

[0], [1], [2], . . . , [m− 1].
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12.1 Zm and Complete Residue Systems
Defintion Set of All Residue Classes

Definition 12.2. We define

Zm = {[a] | a ∈ Z},

that is, Zm is the set of all residue classes modulo m. We call (Zm,+, ·) the ring of

integers modulom.

Zm = {[0], [1], . . . , [m− 1]}.

or

Zm = {0̄, 1̄, . . . , m− 1}.

Example 12.2. • For m = 2:

Z2 = {[0], [1]}

• For m = 3:

Z3 = {[0], [1], [2]}

• For m = 4:

Z4 = {[0], [1], [2], [3]}

• For m = 5:

Z5 = {[0], [1], [2], [3], [4]}

Definition 12.3. A set of m integers

{a0, a1, . . . , am−1}

is called a complete residue system modulo m if

Zm = {[a0], [a1], . . . , [am−1]}.
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12.2 Addition and Multiplication in Zm

Definition 12.4. For [a], [b] ∈ Zm, we define

[a] + [b] = [a+ b]

and

[a] · [b] = [ab].

Remark 12.1. For m = 5, we have

[2] + [3] = [5], and [2] · [3] = [6].

Since 5 ≡ 0 (mod 5) and 6 ≡ 1 (mod 5), we obtain

[5] = [0] and [6] = [1],

so we can also write

[2] + [3] = [0], [2] · [3] = [1].

Theorem 12.4. For any modulus m > 0, if [a] = [b] and [c] = [d], then

[a] + [c] = [b] + [d]

and

[a] · [c] = [b] · [d].

Example 12.3. Take m = 151. Then 150 ≡ −1 (mod 151) and 149 ≡ −2 (mod 151), so

[150][149] = [−1][−2] = [2]
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and

[150] + [149] = [−1] + [−2] = [−3] = [148]

since 148 ≡ −3 (mod 151).

Example 12.4. Addition and Multiplication Tables for Z4

Addition Table

+ 0̄ 1̄ 2̄ 3̄

0̄ 0̄ 1̄ 2̄ 3̄

1̄ 1̄ 2̄ 3̄ 0̄

2̄ 2̄ 3̄ 0̄ 1̄

3̄ 3̄ 0̄ 1̄ 2̄

Multiplication Table

· 0̄ 1̄ 2̄ 3̄

0̄ 0̄ 0̄ 0̄ 0̄

1̄ 0̄ 1̄ 2̄ 3̄

2̄ 0̄ 2̄ 0̄ 2̄

3̄ 0̄ 3̄ 2̄ 1̄

Theorem 12.5. Zn is a ring for any positive integer n.

Proof. Let n be a positive integer. Define Zn = {[0], [1], [2], . . . , [n− 1]}.

Step 1: Proving Zn is a Commutative Group under Addition

1. Closure under addition: ∀[a], [b] ∈ Zn, we have

[a] + [b] = [a+ b] (mod n).
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Since a+ b is an integer, [a+ b] ∈ Zn, Therefore, Zn is closed.

2. Associativity of addition: For [a], [b], [c] ∈ Zn, we have

([a] + [b]) + [c] = [a+ b] + [c] = [a+ b+ c] = [a] + [b+ c] = [a] + ([b] + [c]).

Therefore, addition is associative.

3. Commutativity of addition: For [a], [b] ∈ Zn, we have

[a] + [b] = [a+ b] = [b+ a] = [b] + [a].

Thus, addition is commutative.

4. Identity: The element [0] ∈ Zn is identity because for any [a] ∈ Zn, we have

[a] + [0] = [a+ 0] = [a].

5. Inverse: For each [a] ∈ Zn, there exists an element [b] ∈ Zn such that

[a] + [b] = [0].

The additive inverse of [a] is [n− a], since

[a] + [n− a] = [a+ (n− a)] = [n] = [0].

Therefore, every element has an additive inverse.

Thus, Zn is a commutative group under addition.
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Step 2: Proving Zn is a Semigroup under Multiplication

1. Closure under multiplication: For any [a], [b] ∈ Zn, we have

[a] · [b] = [a · b] (mod n).

Since a · b is an integer, [a · b] ∈ Zn. Therefore, Zn is closed.

2. Associativity of multiplication: For [a], [b], [c] ∈ Zn, we have

([a] · [b]) · [c] = [a · b] · [c] = [a · b · c] = [a] · [b · c] = [a] · ([b] · [c]).

Therefore, multiplication is associative.

Thus, Zn is a semigroup under multiplication.

Step 3: Proving Distributivity of Multiplication over Addition

Finally, we show that multiplication distributes over addition in Zn. For [a], [b], [c] ∈ Zn, we

need to prove that

[a] · ([b] + [c]) = [a] · [b] + [a] · [c].

We have

[a] · ([b] + [c]) = [a] · [b+ c] = [a(b+ c)] = [a · b+ a · c] = [a · b] + [a · c].

Thus, multiplication distributes over addition.

Since Zn satisfies the properties of a commutative group under addition, a semigroup under

multiplication, and distributivity of multiplication over addition, we conclude that Zn is a ring.
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13 Theorems of Euler, Fermat and Carmichael

Definition 13.1. A function f defined on the positive integers is said to be multiplicative if

f(m)f(n) = f(mn), ∀m,n ∈ Z+, (9)

where gcd(m,n) = 1.

If

f(m)f(n) = f(mn), ∀m,n ∈ Z+, (10)

then f is completely multiplicative. Every completely multiplicative function is multiplicative.

Euler’s φ-function

Definition 13.2. Let n be a positive integer. Euler’s φ-function, φ(n), is defined to be

the number of positive integers k less than n which are relatively prime to n:

φ(n) = |{k | 0 ≤ k < n, gcd(k, n) = 1}| .

Example 13.1. By Definition 13.2, we have the following values of φ(n):

n 1 2 3 4 5 6 7 8 9 10 100 101 102 103

φ(n) 1 1 2 2 4 2 6 4 6 4 40 100 32 102

Lemma 13.1. For any positive integer n,

∑
d|n

φ(d) = n.

Theorem 13.1. Let n be a positive integer and gcd(m,n) = 1. Then:

1. Euler’s φ-function is multiplicative. That is,

φ(mn) = φ(m)φ(n),
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where gcd(m,n) = 1.

2. If n is a prime, say p, then

φ(p) = p− 1.

(Conversely, if p is a positive integer with φ(p) = p− 1, then p is prime.)

3. If n is a prime power pα with α > 1, then

φ(pα) = pα − pα−1.

4. If n is composite and has the standard prime factorization form, then

φ(n) = pα1
1

(
1− 1

p1

)
pα2
2

(
1− 1

p2

)
· · · pαk

k

(
1− 1

pk

)
.

Equivalently,

φ(n) = n
k∏

i=1

(
1− 1

pi

)
.

Carmichael’s λ-function

Definition 13.3. Carmichael’s λ-function, λ(n), is defined as follows:

λ(p) = φ(p) = p− 1 for prime p,

λ(pα) = φ(pα) for p = 2 and α ≤ 2,

λ(pα) = φ(pα) for p ≥ 3,

λ(2α) =
1

2
φ(2α) for α ≥ 3,

λ(n) = lcm (λ(pα1
1 ), λ(pα2

2 ), . . . , λ(pαk
k )) if n =

k∏
i=1

pαi
i .
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Example 13.2. By Definition 13.3, we have the following values for λ(n):

n 1 2 3 4 5 6 7 8 9 10 100 101 102 103

λ(n) 1 1 2 2 4 2 6 2 6 4 20 100 16 102

Example 13.3. Let n = 65520 = 24 · 32 · 5 · 7 · 13, and a = 11. Then, gcd(65520, 11) = 1 and

we have

φ(65520) = 8 · 6 · 4 · 6 · 12 = 13824,

λ(65520) = lcm(4, 6, 4, 6, 12) = 12.

The number of multiplicative inverses

Theorem 13.2. The number of multiplicative inverses b−1 modulo n is φ(n), where φ(n)

is Euler’s totient function. Specifically, the number of integers b such that gcd(b, n) = 1

(i.e., the number of integers that have a multiplicative inverse modulo n) is given by φ(n).

Example 13.4. et n = 21. Since φ(21) = 12, there are twelve values of b for which the

multiplicative inverse b−1 (mod 21) exists. In fact, the multiplicative inverse modulo 21 only

exists for each of the following values of b:

b : 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20.

The corresponding values of b−1 (mod 21) are:

b−1 (mod 21) : 1, 11, 16, 17, 8, 19, 2, 13, 4, 5, 10, 20.
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Euler’s Theorem

Theorem 13.3. If m > 0 and a is relatively prime to m, then

aφ(m) ≡ 1 (mod m).

Fermat’s Little Theorem

Theorem 13.4. If p is prime and a is relatively prime to p, then

ap−1 ≡ 1 (mod p).

Let’s look at some examples. Take m = 12, then

φ(m) = φ(22 · 3) = (22 − 2)(3− 1) = 4.

The positive integers a < m with gcd(a,m) = 1 are 1, 5, 7, and 11.

14 ≡ 1 (mod 12) is clear.

52 ≡ 1 (mod 12) since 12 | 52 − 1.

Therefore,

54 ≡ 1 (mod 12).

Now, since 7 ≡ −5 (mod 12) and 4 is even, we have:

74 ≡ (−5)4 ≡ 54 (mod 12).

Thus,

74 ≡ 1 (mod 12).
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Next, 11 ≡ −1 (mod 12), and since 4 is even, we get:

114 ≡ (−1)4 ≡ 1 (mod 12).

Corollary 13.1 (Converse of Fermat’s Little Theorem). Let n be an odd positive integer. If

gcd(a, n) = 1 and

an−1 ≡ 1 (mod n),

then n is composite.

Carmichael’s Theorem

Theorem 13.5. Let a and n be positive integers with gcd(a, n) = 1. Then,

aλ(n) ≡ 1 (mod n),

where λ(n) is Carmichael’s function.

The Order of an Element
The order of an element

Definition 13.4. For integers a, m ̸= 0 with gcd(a,m) = 1, the order of a mod m is its

order in the multiplicative group Zm, that is,

ordm(a) = min {γ ∈ N | aγ ≡ 1 (mod m)} .

Example 13.5. The powers of 2 modulo 7 yield the following congruences:

21 ≡ 2 (mod 7),

22 ≡ 4 (mod 7),

23 ≡ 1 (mod 7),
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24 ≡ 2 (mod 7),

25 ≡ 4 (mod 7),

26 ≡ 1 (mod 7).

This means that the integer 2 has order 3 modulo 7, as the smallest integer γ such that 2γ ≡ 1

(mod 7) is γ = 3.

Remark 13.1. λ(n) will never exceed φ(n) and is often much smaller than φ(n); it is the value

of the largest order it is possible to have.

Example 13.6. Let a = 11 and n = 24. Then φ(24) = 8, λ(24) = 2. So,

11φ(24) = 118 ≡ 1 (mod 24),

11λ(24) = 112 ≡ 1 (mod 24).

That is, ord24(11) = 2.

Lemma 13.2. If an ≡ 1 (mod m), then ordm(a) | n. In particular, ordm(a) | φ(m).

Primitive Root

Theorem 13.6. If ordm(a) = φ(m), then a is called a primitive root modulo m.

The primitive root of 7 is 3 because the following holds: φ(7) = 6, and 31 ≡ 3, 32 ≡

2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5, 36 ≡ 1 (mod 7).

Exercises

1. Find φ(8), φ(19) and φ(101).

2. Find λ(8), λ(19) and λ(101).

3. Compute the order of 2 with respect to the prime modulo 3, 5, 7, 11, 13, 17, and 19.

4. Compute the order of −7 modulo 13
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14 The Chinese Remainder Theorem

The Chinese Remainder Theorem is a structure theorem for the ring Zn. It is arguably the most

important theorem in all of number theory!

The Chinese Remainder Theorem - CRT

Theorem 14.1. Letm1,m2, . . . ,mn be pairwise relatively prime integers greater than 1,

and let a1, a2, . . . , an be any integers. Then there is a solution x to the following system

of simultaneous congruences:

x ≡ a1 (mod n1),

x ≡ a2 (mod n2),

...

x ≡ an (mod nn).

Furthermore, if x and x′ are two solutions to the system, then

x ≡ x′ (mod M),

where M = n1n2 . . . nn is the product of the modulo.

The Chinese Remainder Theorem states that if we have a system of congruences:

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ak (mod nk)

where n1, n2, . . . , nk are pairwise coprime, then there exists a unique solution modulo M ,
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Steps to Solve Using CRT

1. Compute M = n1 × n2 × · · · × nk.

2. Compute mi =
M
ni

for each i.

3. Find the modular xi such that:

xi ≡ m−1
i (mod ni)

4. Compute:

x =
k∑

i=1

xi ·mi · ai (mod M)

If i = 2, Then

x = x1m1a1 + x2m2a2 (mod M)

where

x1 ≡ m−1
1 (mod n1), m1 =

M
n1
, x2 ≡ m−1

2 (mod n2), m2 =
M
n2
, and M = n1n2

Example 14.1. Solve the system:

x ≡ 2 (mod 3)

x ≡ 3 (mod 4)

Step 1: Compute M

M = 3× 4 = 12

Step 2: Compute mi =
M
ni

m1 =
12

3
= 4, m2 =

12

4
= 3
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Step 3: Compute the Modular Inverses

Find xi such that xi ≡ m−1
i (mod ni):

x1 ≡ 4−1 (mod 3) ⇒ x1 = 1

x2 ≡ 3−1 (mod 4) ⇒ x2 = 3

Step 4: Compute x

x = x1m1a1 + x2m2a2 (mod M)

x = (1× 4× 2) + (3× 3× 3) (mod 12)

x = (8) + (27) (mod 12)

x = 35 (mod 12)

x ≡ 11 (mod 12)

Thus, the solution is:

x ≡ 11 (mod 12)

Example 14.2. Solve the system:

x ≡ 2 (mod 3)

x ≡ 3 (mod 4)

x ≡ 1 (mod 5)

Step 1: Compute M

M = 3× 4× 5 = 60
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Step 2: Compute mi =
M
ni

m1 =
60

3
= 20, m2 =

60

4
= 15, M3 =

60

5
= 12

Step 3: Compute the Modular Inverses

Find xi such that xi ≡ m−1
i (mod ni):

x1 ≡ 20−1 (mod 3) ⇒ x1 = 2

x2 ≡ 15−1 (mod 4) ⇒ x2 = 3

x3 ≡ 12−1 (mod 5) ⇒ x3 = 3

Step 4: Compute x

x = (2× 20× 2) + (3× 15× 3) + (1× 12× 3) (mod 60)

x = (80) + (135) + (36) (mod 60)

x = 251 (mod 60)

x ≡ 11 (mod 60)

Thus, the solution is:

x ≡ 11 (mod 60)
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Exercises

1. Find x satisfying:

x ≡ 3 (mod 5)

x ≡ 4 (mod 7)

2. Find x satisfying:

x ≡ 2 (mod 3)

x ≡ 3 (mod 4)

x ≡ 1 (mod 5)

3. Find x satisfying:

x ≡ 1 (mod 6)

x ≡ 3 (mod 7)

4. Find x satisfying:

x ≡ 2 (mod 4)

x ≡ 3 (mod 5)

x ≡ 4 (mod 6)

5. Solve the following system:

x ≡ 5 (mod 9)

x ≡ 7 (mod 11)

x ≡ 3 (mod 13)

x ≡ 1 (mod 17)
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15 Finite Galois Field
Finite Field

Definition 15.1. Galois field, is a field with a finite number of elements. A finite field

with q elements is denoted as Fq (or GF (q)).

Prime Field

Theorem 15.1. If p is prime number, Then Zp prime field Fp.

For example Z2,Z3,Z5,Z7, . . . ,Zp = Fp are field.

Remark 15.1. If the positive integer n is composite, Zn is not a field.

For example Z4,Z6,Z8,Z9, . . . are not field.

Order of a Finite Field

Definition 15.2. The order of a finite field Fq is the number of distinct elements in Fq

(denoted by |Fq|).

For example |Fp| = p, where Fp = {0, 1, 2, . . . p− 1}.

If p = 7, |F7| = 7, where Fp = {0, 1, 2, 3, 4, 5, 6}

Order of a Finite Field

Definition 15.3. The field Fpn , also denoted asGF (pn), is a finite fieldwith pn elements,

where:

• p is a prime number (the characteristic of the field).

• n is a positive integer (the degree of the field extension).

It is an extension field of Fp, meaning it contains Fp as a subfield.

Construction

The field Fpn is constructed as follows:

1. Consider the prime field Fp = {0, 1, 2, . . . , p− 1}.
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2. Choose an irreducible polynomial f(x) of degree n over Fp.

3. Define Fpn as the set of all polynomials in x of degree less than n with coefficients in Fp,

where arithmetic is performed modulo f(x).

Properties

• The multiplicative group F×
pn = Fpn\{0} of order pn−1, meaning there exists a primitive

element g such that every nonzero element can be written as gk for some k.

• Every element of Fpn satisfies the equation:

xpn = x

which characterizes the field.

Example: F23

Consider p = 2 and n = 3. The field F23 has 23 = 8 elements.

To construct it:

• Start with F2 = {0, 1}.

• Choose an irreducible polynomial of degree 3 over F2, such as f(x) = x3 + x+ 1.

• The elements of F23 are represented as:

{0, 1, α, α2, α3, α4, α5, α6}

where α is a root of f(x) and a primitive element.
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16 Discrete Logarithm Problem

The Discrete Logarithm Problem (DLP) is a fundamental mathematical problem in cryptogra-

phy.

16.1 Definition of the Discrete Logarithm Problem

Let p be a large prime, there exists a primitive root g in the field Fp. This means that every

nonzero element of Fp can be written as some power of g.

In particular, by Fermat’s Little Theorem:

gp−1 ≡ 1 (mod p)

and no smaller positive power of g is congruent to 1. Thus, the elements of the multiplicative

group Fp are:

1, g, g2, g3, . . . , gp−2.

Definition of the Discrete Logarithm Problem (DLP)

Definition 16.1. Let g be a primitive root of Fp, and let h be a nonzero element of Fp.

The Discrete Logarithm Problem is the problem of finding an exponent x such that:

gx ≡ h (mod p).

The number x is called the discrete logarithm of h to the base g and is denoted by:

logg(h).

16.2 Applications in Cryptography

The Discrete Logarithm Problem forms the basis for several cryptographic protocols, include

Diffie-Hellman Key Exchange, ElGamal Encryption and Digital Signature Algorithms
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17 Public-key cryptography

17.1 Introduction

Public-key cryptography, also known as asymmetric cryptography, is a cryptographic sys-

tem that uses a pair of keys:

• A public key, which is shared openly.

• A private key, which is kept secret by the owner.

Unlike symmetric cryptography, where both the sender and receiver use the same key, public-

key cryptography allows secure communication without prior key exchange.

17.2 Basic Concept

In a public-key cryptosystem, encryption and decryption are performed using different keys:

• The sender encrypts a message using the recipient’s public key.

• The recipient decrypts the message using their private key.

The encryption function E and decryption function D satisfy:

D(Kpriv, E(Kpub,M)) = M

where:

• M is the plaintext message.

• Kpub is the public key.

• Kpriv is the private key.

• E(Kpub,M) is the encrypted message (ciphertext).
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17.3 Mathematical Foundation

Most public-key cryptosystems rely on mathematical problems that are computationally hard to

solve. Commonly used problems include:

• Integer Factorization Problem: Used in RSA cryptosystem.

• Discrete Logarithm Problem: Used in Diffie-Hellman key exchange and ElGamal cryp-

tosystem.

• Elliptic CurveDiscrete LogarithmProblem: Used in elliptic curve cryptography (ECC).

17.4 Diffie-Hellman Key Exchange (DHKE)

Diffie-Hellman Key Exchange is an asymmetric cryptographic protocol for key exchange, and

its security is based on the computational hardness of solving a discrete logarithm problem.

The Diffie–Hellman key exchange algorithm proceeds as follows:

• Public Parameter Creation: A trusted party chooses and publishes a large prime

p and an integer g, where g has a large prime order in Fp.

• Private Computations:

– Alice chooses a secret integer a and computes A ≡ ga (mod p).

– Bob chooses a secret integer b and computes B ≡ gb (mod p).

• Public Exchange of Values: Alice sends A to Bob, and Bob sends B to Alice.

• Further Private Computations:

– Alice computes SA = Ba = (gb)a (mod p).

– Bob computes SB = Ab = (ga)b (mod p).

Both Alice and Bob will now have the same shared secret S = SA = SB, which

can be used for further cryptographic operations.
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17.4.1 Example of Diffie-Hellman Key Exchange

Let us consider an example where Alice and Bob agree on:

• A prime p = 23,

• A generator g = 5.

Step 1: Private Key Selection

• Alice chooses a secret integer a = 6.

• Bob chooses a secret integer b = 15.

Step 2: Compute Public Keys

A = ga mod p = 56 mod 23 = 15625 mod 23 = 8.

B = gb mod p = 515 mod 23 = 30517578125 mod 23 = 19.

Step 3: Exchange Public Keys Alice sends A = 8 to Bob, and Bob sends B = 19 to Alice.

Step 4: Compute Shared Secret

SA = Ba mod p = 196 mod 23 = 47045881 mod 23 = 2.

SB = Ab mod p = 815 mod 23 = 35184372088832 mod 23 = 2.

Since both Alice and Bob compute the same shared secret S = 2, they can now use it for

encryption.

17.4.2 Diffie-Hellman Key Exchange Analysis

The security of theDiffie-Hellman key exchange is based on the fact that it is difficult to calculate

discrete logarithms in a finite field. An attacker who intercepts the public values A and B

would need to solve the discrete logarithm problem to calculate the shared secret key, which is

computationally infeasible for large prime numbers.
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17.5 ElGamal Cryptosystem

The ElGamal encryption algorithm is a public key cryptography algorithm that uses a key pair

consisting of a private key and a public key. The algorithm involves three steps: key generation,

encryption, and decryption.

The following are the steps involved in the ElGamal encryption algorithm:

1. Key generation:

(a) Choose a large prime p and a generator g in the multiplicative Fp.

(b) Alice selects a secret key a such that 1 ≤ a ≤ p− 1.

(c) Compute h = ga (mod p).

(d) The public key is (p, g, h), and the private key is a.

2. Encryption:

(a) Let m be the message to be encrypted, where 0 ≤ m ≤ p− 1.

(b) Bob selects a random integer k such that 1 ≤ k ≤ p− 1.

(c) Compute c1 = gk (mod p) and c2 = m · hk (mod p).

(d) Send (c1, c2) to Alice.

3. Decryption:

(a) (c1, c2) the ciphertext.

(b) Alice Computesm = c2 · (ca1)−1 (mod p). This value is the same as plaintext

m.

17.5.1 Example of ElGamal Cryptosystem

1. Key generation:

(a) Choose a large prime p = 467 and a generator g = 2 in the multiplicative group Fp.
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(b) Alice selects a secret key a = 153 such that 1 ≤ a ≤ p− 1.

(c) Compute h = ga (mod p) = 2153 (mod 467) = 63.

(d) The public key is (p, g, h) = (467, 2, 63), and the private key is a = 153.

2. Encryption:

(a) Let m = 123 be the message to be encrypted, where 0 ≤ m ≤ p− 1.

(b) Bob selects a random integer k = 85 such that 1 ≤ k ≤ p− 1.

(c) Compute:

c1 = gk (mod p) = 285 (mod 467) = 61

c2 = m · hk (mod p) = 123 · 6385 (mod 467) = 123 · 217 (mod 467) = 85

(d) Send (c1, c2) = (61, 85) to Alice.

3. Decryption:

(a) Received (c1, c2) = (61, 85) as the ciphertext.

(b) Alice computes:

s = ca1 (mod p) = 61153 (mod 467) = 217

(c) Find the inverse of s mod p. Using Extended Euclidean Algorithm, we get:

s−1 = 217−1 (mod 467) = 127

(d) Recover the message m:

m = c2 · s−1 (mod p) = 85 · 127 (mod 467) = 123

(e) Thus, the decrypted message ism = 123, which is the same as the original plaintext.
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17.5.2 ElGamal Analysis

The security of the ElGamal encryption algorithm is based on the hardness of the discrete log-

arithm problem. Given a large prime p and a primitive root g modulo p, and given h ≡ ga

(mod p) for some secret key a, it is computationally infeasible to find a from p, g, and h. This

is known as the discrete logarithm problem, and it is to be a hard problem.

The security of the ElGamal encryption algorithm also depends on the randomness of the

key used for encryption. If the same key k is used to encrypt multiple messages, an attacker can

use the ciphertexts to find the secret key a. Therefore, it is important to choose a different key

k for each message that is encrypted.

In addition, the security of the ElGamal encryption algorithm can be enhanced by using a

large prime p and a large secret key a. The security of the algorithm also depends on the security

of the random number generator used to generate the secret key a and the encryption key k. If

the random number generator is predictable, an attacker may be able to predict the secret key a

or the encryption key k and break the encryption.

In general, the security of the ElGamal encryption algorithm is considered to be strong, and

it is widely used in practice. However, it is important to use appropriate key sizes and follow

best practices for key management to maintain the security of the algorithm.

17.6 RSA Cryptosystem

Public and private keys are both used in RSA algorithm. The public key, which is used to

convert communications from plaintext to ciphertext, can be known and released to anybody.

However, only the accompanying private key may be used to decode communications that have

been encrypted using this particular public key. The RSA algorithm’s key generation procedure,

which has a high level of complexity compared to other cryptosystem methods, is what makes

it so safe and dependable today.
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The following are the steps involved in the RSA algorithm:

Step 1: Key Generation

1. Alice selects two distinct large prime numbers p and q.

2. Compute n = p · q.

3. Compute Euler’s Totient function φ(n) = (p− 1)(q − 1)

4. Choose an encryption exponent e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1.

5. Compute the decryption exponent d such that:

d · e ≡ 1 mod φ(n)

6. Alice’s public key: (e, n).

7. Alice’s private key: (d, n).

Step 2: Encryption (Bob to Alice)

1. Bob obtains Alice’s public key (e, n).

2. Represent the message M as an integer where M < n.

3. Compute the ciphertext C:

C = M e mod n

4. Bob sends C to Alice.

Step 3: Decryption (Alice’s Side)

1. Upon receiving C, Alice uses her private key (d, n).

2. Recover the original message M :

M = Cd mod n
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17.6.1 Example of RSA Public Key Cryptosystem

Step 1: Key Generation

1. Choose two prime numbers: p = 11, q = 13.

2. Compute n = p · q = 11× 13 = 143.

3. Compute Euler’s Totient:

φ(n) = (p− 1)(q − 1) = 10× 12 = 120

4. Choose public exponent e = 7 such that gcd(7, 120) = 1.

5. Compute the private key d such that:

d · e ≡ 1 mod 120

The solution is d = 103.

6. Public key: (e = 7, n = 143).

7. Private key: (d = 103, n = 143).

Step 2: Encryption (Bob to Alice)

1. Message M = 9.

2. Compute ciphertext C:

C = M e mod n = 97 mod 143 = 48

3. Bob sends C = 48 to Alice.
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Step 3: Decryption (Alice’s side)

1. Compute the original message M :

M = Cd mod n = 48103 mod 143 = 9

2. Alice recovers the message M = 9.

Result: The decrypted message is M = 9.

17.6.2 RSA Analysis

The security of the RSA cryptosystem is fundamentally based on the computational difficulty

of factorizing the product n = p · q, where p and q are large prime numbers. As of now, no effi-

cient algorithm exists for factorizing large numbers in polynomial time, making RSA secure if

appropriately large primes are used. The hardness of this factorization problem is what prevents

adversaries from deriving the private key from the public key. The larger the primes, the more

secure the system becomes, as the time required to factorize n grows exponentially with its size.

A crucial aspect of RSA security is the choice of key size. Commonly used key sizes are 2048

bits or greater, which are currently considered secure against brute-force attacks. Increasing the

key size exponentially increases the difficulty of factorization and ensures that the encryption re-

mains safe even with advances in computational power. However, larger key sizes also demand

more processing power for encryption and decryption, creating a trade-off between security and

performance.

Despite its robustness, RSA is vulnerable to several potential attacks. One of the primary

threats is brute-force attacks, which involve attempting all possible keys until the correct one is

found. This method, however, becomes infeasible with sufficiently large key sizes. Mathemati-

cal attacks focus on exploiting weaknesses in the number theory behind RSA, primarily through

factorization techniques. Factoring attacks directly target the difficulty of breaking n into p and

q. Another mathematical approach, discrete logarithm attacks, is impractical for RSA due to the

nature of modular arithmetic.
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