

## 8 Theory of Congruence's

## **Defintion of Congruent**

**Definition 8.1.** Let m be a positive integer. We say that a is congruent to b modulo m denoted as  $a \equiv b \pmod{m}$ , if  $m \mid (a - b)$ , where a and b are integers.

**Example 8.1.** We want to check if  $a \equiv b \pmod{m}$ 

- 1.  $25 \equiv 1 \pmod{4}$  since  $4 \mid 25 1$ .
- 2.  $25 \not\equiv 2 \pmod{4}$  since  $4 \nmid 25 2$ .
- 3.  $1 \equiv -3 \pmod{4}$  since  $4 \mid 1 (-3)$ .
- 4. If n is even  $n \equiv 0 \pmod{2}$ .
- 5. If n is odd  $n \equiv 1 \pmod{2}$ .

**Theorem 8.1.** If a and b are integers, then  $a \equiv b \pmod{m}$  if and only if there is an integer k such that a = b + km.

*Proof.* ( $\Rightarrow$ ): Suppose  $a \equiv b \pmod{m} \Rightarrow m \mid (a-b) \Rightarrow a-b=km \Rightarrow a=b+km$  ( $\Leftarrow$ ) suppose that there exists an integer k such that  $a=b+km \Rightarrow a-b=km \Rightarrow m \mid (a-b)$ . Then

$$a \equiv b \pmod{m}$$

**Theorem 8.2.** For m > 0 and for all integers a and b:

$$a \equiv b \pmod{m} \iff a \pmod{m} = b \mod m.$$

 $a \pmod{m} = r$  where r is the remainder given by the Division Algorithm when m is divided by m.

**Example 8.2.** It is 11 PM, and you want to sleep for 8 hours. To determine when to set your alarm, you need to compute the time 8 hours after 11 PM.

First, we add 8 hours to 11 PM:

$$11 + 8 = 19$$

Since time is typically measured on a 12-hour clock, we need to take the result modulo 12:

$$19 \pmod{12} = 7$$

Thus, you should set your alarm for 7 AM.

**Example 8.3.** To what least residue (mod 11) is each of 23, 29, 31, 37, and 41 congruent?

Sol. We will compute the remainder when each number is divided by 11.

$$23 \div 11 = 2 \text{ remainder } 1 \implies 23 \equiv 1 \pmod{11}$$

$$29 \div 11 = 2 \text{ remainder } 7 \implies 29 \equiv 7 \pmod{11}$$

$$31 \div 11 = 2 \text{ remainder } 9 \implies 31 \equiv 9 \pmod{11}$$

$$37 \div 11 = 3 \text{ remainder } 4 \implies 37 \equiv 4 \pmod{11}$$

$$41 \div 11 = 3 \text{ remainder } 8 \implies 41 \equiv 8 \pmod{11}$$

Thus, the least residues modulo 11 are:

$$23 \equiv 1 \pmod{11}, \quad 29 \equiv 7 \pmod{11}, \quad 31 \equiv 9 \pmod{11}, \quad 37 \equiv 4 \pmod{11}, \quad 41 \equiv 8 \pmod{11}.$$

**Theorem 8.3.** Let m be a positive integer. If  $a \equiv b \pmod{m}$  and  $c \equiv d \pmod{m}$ , then:

$$a + c \equiv b + d \pmod{m}$$
.



Proof.

$$a \equiv b \pmod{m} \iff m \mid (a-b) \iff (a-b) = k_1 \cdot m \text{ for some integer } k_1.$$

$$c \equiv d \pmod{m} \iff m \mid (c - d) \iff (c - d) = k_2 \cdot m$$
 for some integer  $k_2$ .

Now, consider the expression (a + c) - (b + d):

$$(a+c)-(b+d)=(a-b)+(c-d)=k_1\cdot m+k_2\cdot m=m\cdot (k_1+k_2).$$

Since  $m \mid [(a+c)-(b+d)]$ , by the equivalent definition of congruence, we conclude that:

$$a + c \equiv b + d \pmod{m}$$
.

Example 8.4.

$$10001 + 20000005 + 3004 \equiv ? \pmod{10}$$

*Sol.* First, we calculate each number modulo 10:

$$10001 \equiv 1 \pmod{10}$$

$$20000005 \equiv 5 \pmod{10}$$

$$3004 \equiv 4 \pmod{10}$$

Now, add them together modulo 10:

$$10001 + 20000005 + 3004 \equiv 1 + 5 + 4 \pmod{10} \equiv 10 \pmod{10} \equiv 0 \pmod{10}$$



**Theorem 8.4.** Let m be a positive integer. If  $a \equiv b \pmod{m}$  and  $c \equiv d \pmod{m}$ , then:

$$ac \equiv bd \pmod{m}$$
.

Proof.

$$a \equiv b \pmod{m} \iff m \mid (a-b) \iff (a-b) = k_1 \cdot m \text{ for some integer } k_1.$$

$$c \equiv d \pmod{m} \iff m \mid (c - d) \iff (c - d) = k_2 \cdot m$$
 for some integer  $k_2$ .

Now, consider the expression ac - bd:

$$ac - bd = ac - ad + ad - bd = a(c - d) + d(a - b).$$

We can factor out m from both terms:

$$ac - bd = a \cdot m \cdot k_2 + d \cdot m \cdot k_1 = m \cdot (a \cdot k_2 + d \cdot k_1).$$

Since  $m \mid (ac - bd)$ , by the equivalent definition of congruence, we conclude that:

$$ac \equiv bd \pmod{m}$$
.

**Example 8.5.** Compute  $10001 \times 20000005 \mod 13$ .

Sol. First, compute each number modulo 13:

$$10001 \equiv 4 \pmod{13}$$

$$20000005 \equiv 12 \pmod{13}$$



Now, multiply these values:

$$10001 \times 20000005 \equiv 4 \times 12 \pmod{13}$$

$$\equiv 48 \pmod{13}$$
.

Since  $48 \div 13 = 3$  with a remainder of 9, we conclude:

$$48 \equiv 9 \pmod{13}$$
.

Thus,

$$10001 \times 20000005 \equiv 9 \pmod{13}$$
.

## 8.1 Exercises of Theory of Congruence's

## **Exercises**

- 1. If  $a \equiv b \pmod{m}$  and  $n \mid m$ , prove that  $a \equiv b \pmod{n}$ .
- 2. Let m be a positive integer. If  $a \equiv b \pmod{m}$  and  $c \equiv d \pmod{m}$ , prove that  $a+c \equiv b+d \pmod{m}$ .
- 3. Find 46, 59, 61, 77, and 58 (mod 39).
- 4. Find the least nonnegative residue modulo 13
  - (a) 22 mod 13
  - (b)  $-1 \mod 13$
  - (c)  $-100 \mod 13$
- 5. What time does a clock read: (1). 29 hours after it reads 11 o'clock? (2) 50 hours before it reads 6 o'clock?