13 Theorems of Euler, Fermat and Carmichael

Definition 13.1. A function f defined on the positive integers is said to be **multiplicative** if

$$f(m)f(n) = f(mn), \quad \forall m, n \in \mathbb{Z}^+,$$
 (9)

where gcd(m, n) = 1.

If

$$f(m)f(n) = f(mn), \quad \forall m, n \in \mathbb{Z}^+,$$
 (10)

then f is **completely multiplicative**. Every completely multiplicative function is multiplicative.

Euler's φ -function

Definition 13.2. Let n be a positive integer. Euler's φ -function, $\varphi(n)$, is defined to be the number of positive integers k less than n which are relatively prime to n:

$$\varphi(n) = |\{k \mid 0 \le k < n, \gcd(k, n) = 1\}|.$$

Example 13.1. By Definition 13.2, we have the following values of $\varphi(n)$:

Lemma 13.1. For any positive integer n,

$$\sum_{d|n} \varphi(d) = n.$$

Theorem 13.1. Let n be a positive integer and gcd(m, n) = 1. Then:

1. Euler's φ -function is multiplicative. That is,

$$\varphi(mn) = \varphi(m)\varphi(n),$$

where gcd(m, n) = 1.

2. If n is a prime, say p, then

$$\varphi(p) = p - 1.$$

(Conversely, if p is a positive integer with $\varphi(p)=p-1$, then p is prime.)

3. If n is a prime power p^{α} with $\alpha > 1$, then

$$\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha - 1}.$$

4. If n is composite and has the standard prime factorization form, then

$$\varphi(n) = p_1^{\alpha_1} \left(1 - \frac{1}{p_1} \right) p_2^{\alpha_2} \left(1 - \frac{1}{p_2} \right) \cdots p_k^{\alpha_k} \left(1 - \frac{1}{p_k} \right).$$

Equivalently,

$$\varphi(n) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i} \right).$$

Carmichael's λ -function

Definition 13.3. Carmichael's λ -function, $\lambda(n)$, is defined as follows:

$$\lambda(p)=\varphi(p)=p-1\quad\text{for prime }p,$$

$$\lambda(p^\alpha)=\varphi(p^\alpha)\quad\text{ for }p=2\text{ and }\alpha\leq 2,$$

$$\lambda(p^{\alpha}) = \varphi(p^{\alpha}) \quad \text{for } p \ge 3,$$

$$\lambda(2^\alpha) = \frac{1}{2}\varphi(2^\alpha) \quad \text{for } \alpha \ge 3,$$

$$\lambda(n) = \operatorname{lcm}\left(\lambda(p_1^{\alpha_1}), \lambda(p_2^{\alpha_2}), \dots, \lambda(p_k^{\alpha_k})\right) \quad \text{if } n = \prod_{i=1}^k p_i^{\alpha_i}.$$

Example 13.2. By Definition 13.3, we have the following values for $\lambda(n)$:

$$n$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 100 | 101 | 102 | 103 | $\lambda(n)$ | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 2 | 6 | 4 | 20 | 100 | 16 | 102

Example 13.3. Let $n = 65520 = 2^4 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13$, and a = 11. Then, gcd(65520, 11) = 1 and we have

$$\varphi(65520) = 8 \cdot 6 \cdot 4 \cdot 6 \cdot 12 = 13824,$$

$$\lambda(65520) = \text{lcm}(4, 6, 4, 6, 12) = 12.$$

The number of multiplicative inverses

Theorem 13.2. The number of multiplicative inverses b^{-1} modulo n is $\varphi(n)$, where $\varphi(n)$ is Euler's totient function. Specifically, the number of integers b such that $\gcd(b,n)=1$ (i.e., the number of integers that have a multiplicative inverse modulo n) is given by $\varphi(n)$.

Example 13.4. et n=21. Since $\varphi(21)=12$, there are twelve values of b for which the multiplicative inverse $b^{-1} \pmod{21}$ exists. In fact, the multiplicative inverse modulo 21 only exists for each of the following values of b:

$$b: 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20.$$

The corresponding values of $b^{-1} \pmod{21}$ are:

$$b^{-1} \pmod{21} : 1, 11, 16, 17, 8, 19, 2, 13, 4, 5, 10, 20.$$

Euler's Theorem

Theorem 13.3. If m > 0 and a is relatively prime to m, then

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$
.

Fermat's Little Theorem

Theorem 13.4. If p is prime and a is relatively prime to p, then

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Let's look at some examples. Take m=12, then

$$\varphi(m) = \varphi(2^2 \cdot 3) = (2^2 - 2)(3 - 1) = 4.$$

The positive integers a < m with gcd(a, m) = 1 are 1, 5, 7, and 11.

$$14 \equiv 1 \pmod{12}$$
 is clear.

$$5^2 \equiv 1 \pmod{12}$$
 since $12 \mid 5^2 - 1$.

Therefore,

$$5^4 \equiv 1 \pmod{12}.$$

Now, since $7 \equiv -5 \pmod{12}$ and 4 is even, we have:

$$7^4 \equiv (-5)^4 \equiv 5^4 \pmod{12}$$
.

Thus,

$$7^4 \equiv 1 \pmod{12}.$$

Next, $11 \equiv -1 \pmod{12}$, and since 4 is even, we get:

$$11^4 \equiv (-1)^4 \equiv 1 \pmod{12}$$
.

Corollary 13.1 (Converse of Fermat's Little Theorem). Let n be an odd positive integer. If gcd(a, n) = 1 and

$$a^{n-1} \equiv 1 \pmod{n}$$
,

then n is composite.

Carmichael's Theorem

Theorem 13.5. Let a and n be positive integers with gcd(a, n) = 1. Then,

$$a^{\lambda(n)} \equiv 1 \pmod{n}$$
,

where $\lambda(n)$ is Carmichael's function.

The Order of an Element

The order of an element

Definition 13.4. For integers $a, m \neq 0$ with gcd(a, m) = 1, the order of $a \mod m$ is its order in the multiplicative group \mathbb{Z}_m , that is,

$$\operatorname{ord}_m(a) = \min \left\{ \gamma \in \mathbb{N} \mid a^{\gamma} \equiv 1 \pmod{m} \right\}.$$

Example 13.5. The powers of 2 modulo 7 yield the following congruences:

$$2^1 \equiv 2 \pmod{7}$$
,

$$2^2 \equiv 4 \pmod{7},$$

$$2^3 \equiv 1 \pmod{7},$$

$$2^4 \equiv 2 \pmod{7},$$

$$2^5 \equiv 4 \pmod{7},$$

$$2^6 \equiv 1 \pmod{7}.$$

This means that the integer 2 has order 3 modulo 7, as the smallest integer γ such that $2^{\gamma} \equiv 1 \pmod{7}$ is $\gamma = 3$.

Remark 13.1. $\lambda(n)$ will never exceed $\varphi(n)$ and is often much smaller than $\varphi(n)$; it is the value of the largest order it is possible to have.

Example 13.6. Let a = 11 and n = 24. Then $\varphi(24) = 8$, $\lambda(24) = 2$. So,

$$11^{\varphi(24)} = 11^8 \equiv 1 \pmod{24}$$
,

$$11^{\lambda(24)} = 11^2 \equiv 1 \pmod{24}$$
.

That is, $ord_{24}(11) = 2$.

Lemma 13.2. If $a^n \equiv 1 \pmod{m}$, then $\operatorname{ord}_m(a) \mid n$. In particular, $\operatorname{ord}_m(a) \mid \varphi(m)$.

Primitive Root

Theorem 13.6. If $ord_m(a) = \varphi(m)$, then a is called a primitive root modulo m.

The primitive root of 7 is 3 because the following holds: $\varphi(7) = 6$, and $3^1 \equiv 3$, $3^2 \equiv 2$, $3^3 \equiv 6$, $3^4 \equiv 4$, $3^5 \equiv 5$, $3^6 \equiv 1 \pmod{7}$.

Exercises

- 1. Find $\varphi(8)$, $\varphi(19)$ and $\varphi(101)$.
- 2. Find $\lambda(8)$, $\lambda(19)$ and $\lambda(101)$.
- 3. Compute the order of 2 with respect to the prime modulo 3, 5, 7, 11, 13, 17, and 19.
- 4. Compute the order of -7 modulo 13