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13 Theorems of Euler, Fermat and Carmichael

Definition 13.1. A function f defined on the positive integers is said to be multiplicative if

f(m)f(n) = f(mn), ∀m,n ∈ Z+, (9)

where gcd(m,n) = 1.

If

f(m)f(n) = f(mn), ∀m,n ∈ Z+, (10)

then f is completely multiplicative. Every completely multiplicative function is multiplicative.

Euler’s φ-function

Definition 13.2. Let n be a positive integer. Euler’s φ-function, φ(n), is defined to be

the number of positive integers k less than n which are relatively prime to n:

φ(n) = |{k | 0 ≤ k < n, gcd(k, n) = 1}| .

Example 13.1. By Definition 13.2, we have the following values of φ(n):

n 1 2 3 4 5 6 7 8 9 10 100 101 102 103

φ(n) 1 1 2 2 4 2 6 4 6 4 40 100 32 102

Lemma 13.1. For any positive integer n,

∑
d|n

φ(d) = n.

Theorem 13.1. Let n be a positive integer and gcd(m,n) = 1. Then:

1. Euler’s φ-function is multiplicative. That is,

φ(mn) = φ(m)φ(n),
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where gcd(m,n) = 1.

2. If n is a prime, say p, then

φ(p) = p− 1.

(Conversely, if p is a positive integer with φ(p) = p− 1, then p is prime.)

3. If n is a prime power pα with α > 1, then

φ(pα) = pα − pα−1.

4. If n is composite and has the standard prime factorization form, then

φ(n) = pα1
1

(
1− 1

p1

)
pα2
2

(
1− 1

p2

)
· · · pαk

k

(
1− 1

pk

)
.

Equivalently,

φ(n) = n
k∏

i=1

(
1− 1

pi

)
.

Carmichael’s λ-function

Definition 13.3. Carmichael’s λ-function, λ(n), is defined as follows:

λ(p) = φ(p) = p− 1 for prime p,

λ(pα) = φ(pα) for p = 2 and α ≤ 2,

λ(pα) = φ(pα) for p ≥ 3,

λ(2α) =
1

2
φ(2α) for α ≥ 3,

λ(n) = lcm (λ(pα1
1 ), λ(pα2

2 ), . . . , λ(pαk
k )) if n =

k∏
i=1

pαi
i .
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Example 13.2. By Definition 13.3, we have the following values for λ(n):

n 1 2 3 4 5 6 7 8 9 10 100 101 102 103

λ(n) 1 1 2 2 4 2 6 2 6 4 20 100 16 102

Example 13.3. Let n = 65520 = 24 · 32 · 5 · 7 · 13, and a = 11. Then, gcd(65520, 11) = 1 and

we have

φ(65520) = 8 · 6 · 4 · 6 · 12 = 13824,

λ(65520) = lcm(4, 6, 4, 6, 12) = 12.

The number of multiplicative inverses

Theorem 13.2. The number of multiplicative inverses b−1 modulo n is φ(n), where φ(n)

is Euler’s totient function. Specifically, the number of integers b such that gcd(b, n) = 1

(i.e., the number of integers that have a multiplicative inverse modulo n) is given by φ(n).

Example 13.4. et n = 21. Since φ(21) = 12, there are twelve values of b for which the

multiplicative inverse b−1 (mod 21) exists. In fact, the multiplicative inverse modulo 21 only

exists for each of the following values of b:

b : 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20.

The corresponding values of b−1 (mod 21) are:

b−1 (mod 21) : 1, 11, 16, 17, 8, 19, 2, 13, 4, 5, 10, 20.
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Euler’s Theorem

Theorem 13.3. If m > 0 and a is relatively prime to m, then

aφ(m) ≡ 1 (mod m).

Fermat’s Little Theorem

Theorem 13.4. If p is prime and a is relatively prime to p, then

ap−1 ≡ 1 (mod p).

Let’s look at some examples. Take m = 12, then

φ(m) = φ(22 · 3) = (22 − 2)(3− 1) = 4.

The positive integers a < m with gcd(a,m) = 1 are 1, 5, 7, and 11.

14 ≡ 1 (mod 12) is clear.

52 ≡ 1 (mod 12) since 12 | 52 − 1.

Therefore,

54 ≡ 1 (mod 12).

Now, since 7 ≡ −5 (mod 12) and 4 is even, we have:

74 ≡ (−5)4 ≡ 54 (mod 12).

Thus,

74 ≡ 1 (mod 12).
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Next, 11 ≡ −1 (mod 12), and since 4 is even, we get:

114 ≡ (−1)4 ≡ 1 (mod 12).

Corollary 13.1 (Converse of Fermat’s Little Theorem). Let n be an odd positive integer. If

gcd(a, n) = 1 and

an−1 ≡ 1 (mod n),

then n is composite.

Carmichael’s Theorem

Theorem 13.5. Let a and n be positive integers with gcd(a, n) = 1. Then,

aλ(n) ≡ 1 (mod n),

where λ(n) is Carmichael’s function.

The Order of an Element
The order of an element

Definition 13.4. For integers a, m ̸= 0 with gcd(a,m) = 1, the order of a mod m is its

order in the multiplicative group Zm, that is,

ordm(a) = min {γ ∈ N | aγ ≡ 1 (mod m)} .

Example 13.5. The powers of 2 modulo 7 yield the following congruences:

21 ≡ 2 (mod 7),

22 ≡ 4 (mod 7),

23 ≡ 1 (mod 7),
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24 ≡ 2 (mod 7),

25 ≡ 4 (mod 7),

26 ≡ 1 (mod 7).

This means that the integer 2 has order 3 modulo 7, as the smallest integer γ such that 2γ ≡ 1

(mod 7) is γ = 3.

Remark 13.1. λ(n) will never exceed φ(n) and is often much smaller than φ(n); it is the value

of the largest order it is possible to have.

Example 13.6. Let a = 11 and n = 24. Then φ(24) = 8, λ(24) = 2. So,

11φ(24) = 118 ≡ 1 (mod 24),

11λ(24) = 112 ≡ 1 (mod 24).

That is, ord24(11) = 2.

Lemma 13.2. If an ≡ 1 (mod m), then ordm(a) | n. In particular, ordm(a) | φ(m).

Primitive Root

Theorem 13.6. If ordm(a) = φ(m), then a is called a primitive root modulo m.

The primitive root of 7 is 3 because the following holds: φ(7) = 6, and 31 ≡ 3, 32 ≡

2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5, 36 ≡ 1 (mod 7).

Exercises

1. Find φ(8), φ(19) and φ(101).

2. Find λ(8), λ(19) and λ(101).

3. Compute the order of 2 with respect to the prime modulo 3, 5, 7, 11, 13, 17, and 19.

4. Compute the order of −7 modulo 13
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