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13 Theorems of Euler, Fermat and Carmichael

Definition 13.1. A function f defined on the positive integers is said to be multiplicative if
fm)f(n) = f(mn), Ym,neZ", ©)

where ged(m,n) = 1.
If
f(m)f(n) = f(mn), Ym,neZ", (10)

then f is completely multiplicative. Every completely multiplicative function is multiplicative.

Euler’s p-function

Definition 13.2. Let n be a positive integer. Euler’s ¢-function, ¢(n), is defined to be

the number of positive integers k less than n which are relatively prime to n:

p(n) ={k |0 <k <n,ged(k,n) =1}.

Example 13.1. By Definition 13.2, we have the following values of ¢(n):

n |1 23456 78 9 10 100 101 102 103

en)|1 1 2 2 4 2 6 4 6 4 40 100 32 102

Lemma 13.1. For any positive integer n,

Z o(d) = n.
dln

Theorem 13.1. Let n be a positive integer and gcd(m,n) = 1. Then:

1. Euler’s p-function is multiplicative. That is,

p(mn) = p(m)p(n),
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where ged(m,n) = 1.

2. Ifnis a prime, say p, then

op)=p—1

(Conversely, if p is a positive integer with o(p) = p — 1, then p is prime.)

3. If nis a prime power p® with o > 1, then

e(P*) =p* —p

4. If n is composite and has the standard prime factorization form, then

1 1
n)=p (1——)p(1——) - p(1-—
©(n) =i ( p1)p2 ( p2) Dy, (

Equivalently,

Definition 13.3. Carmichael’s A-function, A(n), is defined as follows:

A(p) = p(p) =p—1 for prime p,

A(p®) = p(p®) forp >3,

1
A(2%) = §g0(2a) for a > 3,

k
A(n) = lem (A(pS), A(pS2), . .., A(pS*))  ifn = Hpgi.
=1
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Example 13.2. By Definition 13.3, we have the following values for A(n):

n |1 23456 789 10 100 101 102 103

An)|1 1 2 2 426 2 6 4 20 100 16 102

Example 13.3. Letn = 65520 = 2* - 32 - 5-7- 13, and a = 11. Then, gcd(65520,11) = 1 and
we have

©(65520) = 8- 6-4-6- 12 = 13824,

A(65520) = lem(4, 6,4, 6,12) = 12.

The number of multiplicative inverses

Theorem 13.2. The number of multiplicative inverses b= modulo n is p(n), where p(n)
is Euler s totient function. Specifically, the number of integers b such that ged(b,n) = 1

(i.e., the number of integers that have a multiplicative inverse modulo n) is given by p(n).

Example 13.4. et n = 21. Since p(21) = 12, there are twelve values of b for which the
multiplicative inverse b~! (mod 21) exists. In fact, the multiplicative inverse modulo 21 only

exists for each of the following values of b:

b:1,2,4,58,10,11,13, 16,17, 19, 20.

The corresponding values of b=! (mod 21) are:

b=' (mod 21):1,11,16,17,8,19,2,13,4,5, 10, 20.
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Euler’s Theorem

Theorem 13.3. If m > 0 and a is relatively prime to m, then

a?™ =1 (mod m).

Theorem 13.4. If p is prime and a is relatively prime to p, then

a’'=1 (mod p).

Let’s look at some examples. Take m = 12, then

p(m) =p(2°-3) = (2 =2)(3-1) =4.

The positive integers a < m with ged(a, m) = lare 1,5,7, and 11.

14=1 (mod 12) is clear.

5=1 (mod12) since 12]5° —1.

Therefore,
5*=1 (mod 12).
Now, since 7 = —5 (mod 12) and 4 is even, we have:
7 =(-5*'=5" (mod 12).
Thus,
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Next, 11 = —1 (mod 12), and since 4 is even, we get:
1*=(-D*=1 (mod 12).
Corollary 13.1 (Converse of Fermat’s Little Theorem). Let n be an odd positive integer. If

ged(a,n) =1 and

then n is composite.

Carmichael’s Theorem

Theorem 13.5. Let a and n be positive integers with gcd(a,n) = 1. Then,

™ =1 (mod n),

where \(n) is Carmichael s function.

The Order of an Element

Definition 13.4. For integers a, m # 0 with gcd(a, m) = 1, the order of a mod m is its

order in the multiplicative group Z,,, that is,

ord,,(a) =min{y €N |a”=1 (mod m)}.

Example 13.5. The powers of 2 modulo 7 yield the following congruences:

2! =2 (mod 7),

22=4 (mod 7),

2°=1 (mod 7),
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2' =2 (mod 7),
2°=4 (mod 7),
2°=1 (mod 7).

This means that the integer 2 has order 3 modulo 7, as the smallest integer v such that 27 = 1

(mod 7) is vy = 3.

Remark 13.1. \(n) will never exceed ¢(n) and is often much smaller than ¢(n); it is the value

of the largest order it is possible to have.

Example 13.6. Let @ = 11 and n = 24. Then ¢(24) = 8, A(24) = 2. So,

11729 = 118 =1 (mod 24),

11'®Y =112=1 (mod 24).
That is, ordy,(11) = 2.

Lemma 13.2. If a” = 1 (mod m), then ord,,(a) | n. In particular, ord,,(a) | p(m).

Primitive Root

Theorem 13.6. If ord,,(a) = ©(m), then a is called a primitive root modulo m.

The primitive root of 7 is 3 because the following holds: ¢(7) =6, and 3'=3, 32=
2, 3=6, 3'=4 3F=5 3=1 (modT7).

Exercises

1. Find ¢(8), »(19) and ¢(101).
2. Find A\(8), A\(19) and A(101).
3. Compute the order of 2 with respect to the prime modulo 3, 5, 7, 11, 13, 17, and 19.

4. Compute the order of —7 modulo 13
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