

P a g e | 1 Study Year: 2024-2025

Al- Mustaqbal University
College of Sciences

Department of Cybersecurity

العلومكلية

ان قسم الأمن السيبر

Lecture: 10

Sanitizers

Subject: software security

second Stage

Lecturer: Asst. Lecturer. Suha Alhussieny

P a g e | 2 Study Year: 2024-2025

Al- Mustaqbal University
College of Sciences

Department of Cybersecurity

Sanitizers

Sanitizers are tools designed to detect various types of bugs in programs, often

related to memory safety and undefined behavior. They work by instrumenting

the code to check for common issues during runtime. Some common types of

sanitizers include:

•AddressSanitizer (ASan): Detects memory errors such as buffer overflows, use-

after-free, and memory leaks.

•MemorySanitizer (MSan): Identifies uninitialized memory reads.

•ThreadSanitizer (TSan): Finds data races and threading issues.

•UndefinedBehaviorSanitizer (UBSan): Catches undefined behaviors, such as

integer overflows or invalid operations.

P a g e | 3 Study Year: 2024-2025

Al- Mustaqbal University
College of Sciences

Department of Cybersecurity

Fuzzing

Fuzzing is an automated testing technique that involves sending a large volume of

random or semi-random inputs to a program to uncover vulnerabilities or crashes.

It works by generating a wide range of inputs to test how the software handles

unexpected or malformed data. Fuzzing can be categorized into different types:

• Mutation-Based Fuzzing: Modifies existing inputs or seeds to generate new test

cases.

• Generation-Based Fuzzing: Creates inputs from scratch based on input formats

or protocols.

• Coverage-Guided Fuzzing: Uses feedback from the program's execution to

guide the generation of more effective test inputs.

P a g e | 4 Study Year: 2024-2025

Al- Mustaqbal University
College of Sciences

Department of Cybersecurity

Symbolic Execution

Symbolic execution is a technique used to analyze a program by exploring

different execution paths based on symbolic values rather than concrete inputs. It

involves:

• Path Exploration: The symbolic execution engine explores possible execution

paths of the program, which can lead to discovering hidden bugs and

vulnerabilities.

• Constraint Solving: The system generates constraints based on the symbolic

inputs and solves them to find possible values that would lead to different

execution paths.

• Error Detection: Identifies potential issues by analyzing the constraints and the

symbolic execution paths.

P a g e | 5 Study Year: 2024-2025

Al- Mustaqbal University
College of Sciences

Department of Cybersecurity

Q/

1. What is the primary purpose of sanitizers in software?

A. To compile code

B. To remove comments from code

C. To detect bugs during runtime

D. To manage databases

E. To encrypt code

P a g e | 6 Study Year: 2024-2025

Al- Mustaqbal University
College of Sciences

Department of Cybersecurity

2. Which sanitizer is used to detect memory errors like buffer

overflows?

A. ThreadSanitizer

B. AddressSanitizer

C. MemorySanitizer

D. CodeSanitizer

E. UndefinedBehaviorSanitizer

3. What kind of issues does MemorySanitizer primarily detect?

A. Race conditions

B. Buffer overflows

C. Use-after-free errors

D. Memory leaks

E. Uninitialized memory reads

4. What kind of problems does ThreadSanitizer help find?

A. Memory leaks

B. Data races

C. Buffer overflows

D. Integer overflows

E. Input validation errors

5. Which sanitizer helps identify undefined behaviors like integer

overflows?

P a g e | 7 Study Year: 2024-2025

Al- Mustaqbal University
College of Sciences

Department of Cybersecurity

A. AddressSanitizer

B. MemorySanitizer

C. ThreadSanitizer

D. UndefinedBehaviorSanitizer

E. ControlFlowSanitizer

6. What technique involves sending random or semi-random

inputs to software to find vulnerabilities?

A. Sanitizing

B. Symbolic Execution

C. Fuzzing

D. Debugging

E. Compilation

7. What is mutation-based fuzzing?

A. It starts from scratch to build inputs

B. It changes protocols

C. It modifies existing inputs to generate test cases

D. It encrypts the code

E. It analyzes symbolic paths

8. What is the focus of generation-based fuzzing?

A. Modifying known inputs

B. Using code coverage tools

C. Generating inputs from scratch

P a g e | 8 Study Year: 2024-2025

Al- Mustaqbal University
College of Sciences

Department of Cybersecurity

D. Copying test cases

E. Monitoring runtime memory

9. How does coverage-guided fuzzing improve effectiveness?

A. By disabling sanitizers

B. By using symbolic execution

C. By using program feedback to guide input generation

D. By encrypting inputs

E. By skipping invalid inputs

10. What does symbolic execution use instead of real inputs?

A. Random strings

B. Manual test cases

C. Symbolic values

D. Code sanitizers

E. Machine learning

11. What is the purpose of path exploration in symbolic execution?

A. To delete unnecessary code

B. To find runtime errors

C. To explore all execution paths of a program

D. To compile efficiently

E. To find dead code

12. What does constraint solving in symbolic execution involve?

P a g e | 9 Study Year: 2024-2025

Al- Mustaqbal University
College of Sciences

Department of Cybersecurity

A. Minimizing code

B. Solving equations to guide execution paths

C. Encrypting variables

D. Detecting input types

E. Blocking invalid paths

13. Which testing method best uncovers hidden bugs via logical

paths?

A. Manual testing

B. Symbolic execution

C. Code review

D. Debugging

E. Static analysis

14. Which of the following tools would best detect a use-after-free

error?

A. MSan

B. UBSan

C. TSan

D. ASan

E. GDB

15. What category of fuzzing depends heavily on knowledge of

input format or protocol?

P a g e | 10 Study Year: 2024-2025

Al- Mustaqbal University
College of Sciences

Department of Cybersecurity

A. Mutation-based

B. Black-box

C. White-box

D. Generation-based

E. Constraint-guided

