12 Residue Classes

In *modular arithmetic*, a *residue class* is a set of integers that are congruent to each other modulo a given number. When working with congruences, these residue classes help us group numbers that share certain properties under a modulo operation.

Defintion Residue Class of a modulo m

Definition 12.1. Let m > 0 be given. For each integer a, we define

$$[a]_m = \bar{a} = \{x : x \equiv a \pmod{m}\}.$$

In other words, $[a]_m$ or \bar{a} is the set of all integers that are congruent to a modulo m. We call $[a]_m$ the residue class of a modulo m. Some people also call $[a]_m$ the congruence class or equivalence class of a modulo m.

Example 12.1. Consider m = 5 and look at the residue class of $2 \mod 5$. We are looking for all integers that leave the same remainder as 2 when divided by 5. These integers are:

$$\{\ldots, -13, -8, -3, 2, 7, 12, 17, \ldots\}$$

Thus, the residue class of 2 modulo 5 is:

$$\bar{2} = [2]_5 = \{\dots, -13, -8, -3, 2, 7, 12, 17, \dots\}$$

Similarly, the residue class of 3 mod 5 would be:

$$\bar{3} = [3]_5 = \{\ldots, -7, -2, 3, 8, 13, 18, \ldots\}$$

Theorem 12.1. For m > 0, we have

$$\bar{a} = [a]_m = \{ mq + a \mid q \in \mathbb{Z} \}.$$

Proof.

 $x \in [a]_m \iff x \equiv a \pmod m \iff m \mid (x-a) \iff x-a = mq \text{ for some } q \in \mathbb{Z}$

$$\iff x = mq + a \text{ for some } q \in \mathbb{Z}.$$

Theorem 12.2. For a given modulus m > 0, we have:

$$[a]_m = [b]_m \iff a \equiv b \pmod{m}.$$

Proof. " \Rightarrow " Assume [a] = [b]. Since $a \equiv a \pmod{m}$, we have $a \in [a]$. Since [a] = [b], we have $a \in [b]$. By the definition of [b], this gives $a \equiv b \pmod{m}$.

" \Leftarrow " Assume $a \equiv b \pmod{m}$. We must prove that the sets [a] and [b].

Let $x \in [a]$. Then $x \equiv a \pmod{m}$. Since $a \equiv b \pmod{m}$, by transitivity, $x \equiv b \pmod{m}$, so $x \in [b]$.

Conversely, if $x \in [b]$, then $x \equiv b \pmod m$. By symmetry, since $a \equiv b \pmod m$, we also have $b \equiv a \pmod m$. Thus, by transitivity, $x \equiv a \pmod m$, and so $x \in [a]$.

This proves that
$$[a] = [b]$$
.

Distinct Residue Classes modulo m

Theorem 12.3. Given m > 0, there are exactly m distinct residue classes modulo m, namely,

$$[0], [1], [2], \ldots, [m-1].$$

12.1 \mathbb{Z}_m and Complete Residue Systems

Defintion Set of All Residue Classes

Definition 12.2. We define

$$\mathbb{Z}_m = \{ [a] \mid a \in \mathbb{Z} \},\$$

that is, \mathbb{Z}_m is the set of all residue classes modulo m. We call $(\mathbb{Z}_m, +, \cdot)$ the **ring of** integers modulo m.

$$\mathbb{Z}_m = \{[0], [1], \dots, [m-1]\}.$$

or

$$\mathbb{Z}_m = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}.$$

Example 12.2. • For m = 2:

$$\mathbb{Z}_2 = \{[0], [1]\}$$

• For m = 3:

$$\mathbb{Z}_3 = \{[0], [1], [2]\}$$

• For m = 4:

$$\mathbb{Z}_4 = \{[0], [1], [2], [3]\}$$

• For m = 5:

$$\mathbb{Z}_5 = \{[0], [1], [2], [3], [4]\}$$

Definition 12.3. A set of m integers

$$\{a_0, a_1, \ldots, a_{m-1}\}$$

is called a complete residue system modulo m if

$$\mathbb{Z}_m = \{[a_0], [a_1], \dots, [a_{m-1}]\}.$$

12.2 Addition and Multiplication in \mathbb{Z}_m

Definition 12.4. For $[a], [b] \in \mathbb{Z}_m$, we define

$$[a] + [b] = [a+b]$$

and

$$[a] \cdot [b] = [ab].$$

Remark 12.1. For m = 5, we have

$$[2] + [3] = [5]$$
, and $[2] \cdot [3] = [6]$.

Since $5 \equiv 0 \pmod{5}$ and $6 \equiv 1 \pmod{5}$, we obtain

$$[5] = [0]$$
 and $[6] = [1]$,

so we can also write

$$[2] + [3] = [0], \quad [2] \cdot [3] = [1].$$

Theorem 12.4. For any modulus m > 0, if [a] = [b] and [c] = [d], then

$$[a] + [c] = [b] + [d]$$

and

$$[a] \cdot [c] = [b] \cdot [d].$$

Example 12.3. Take m = 151. Then $150 \equiv -1 \pmod{151}$ and $149 \equiv -2 \pmod{151}$, so

$$[150][149] = [-1][-2] = [2]$$

and

$$[150] + [149] = [-1] + [-2] = [-3] = [148]$$

since $148 \equiv -3 \pmod{151}$.

Example 12.4. Addition and Multiplication Tables for \mathbb{Z}_4

Addition Table

Multiplication Table

Theorem 12.5. \mathbb{Z}_n is a ring for any positive integer n.

Proof. Let n be a positive integer. Define $\mathbb{Z}_n = \{[0], [1], [2], \dots, [n-1]\}.$

Step 1: Proving \mathbb{Z}_n is a Commutative Group under Addition

1. Closure under addition: $\forall [a], [b] \in \mathbb{Z}_n$, we have

$$[a] + [b] = [a + b] \pmod{n}.$$

Since a + b is an integer, $[a + b] \in \mathbb{Z}_n$, Therefore, \mathbb{Z}_n is closed.

2. Associativity of addition: For $[a], [b], [c] \in \mathbb{Z}_n$, we have

$$([a] + [b]) + [c] = [a + b] + [c] = [a + b + c] = [a] + [b + c] = [a] + ([b] + [c]).$$

Therefore, addition is associative.

3. Commutativity of addition: For $[a], [b] \in \mathbb{Z}_n$, we have

$$[a] + [b] = [a + b] = [b + a] = [b] + [a].$$

Thus, addition is commutative.

4. **Identity:** The element $[0] \in \mathbb{Z}_n$ is identity because for any $[a] \in \mathbb{Z}_n$, we have

$$[a] + [0] = [a + 0] = [a].$$

5. **Inverse:** For each $[a] \in \mathbb{Z}_n$, there exists an element $[b] \in \mathbb{Z}_n$ such that

$$[a] + [b] = [0].$$

The additive inverse of [a] is [n-a], since

$$[a] + [n - a] = [a + (n - a)] = [n] = [0].$$

Therefore, every element has an additive inverse.

Thus, \mathbb{Z}_n is a commutative group under addition.

Step 2: Proving \mathbb{Z}_n is a Semigroup under Multiplication

1. Closure under multiplication: For any $[a], [b] \in \mathbb{Z}_n$, we have

$$[a] \cdot [b] = [a \cdot b] \pmod{n}.$$

Since $a \cdot b$ is an integer, $[a \cdot b] \in \mathbb{Z}_n$. Therefore, \mathbb{Z}_n is closed.

2. Associativity of multiplication: For $[a], [b], [c] \in \mathbb{Z}_n$, we have

$$([a] \cdot [b]) \cdot [c] = [a \cdot b] \cdot [c] = [a \cdot b \cdot c] = [a] \cdot [b \cdot c] = [a] \cdot ([b] \cdot [c]).$$

Therefore, multiplication is associative.

Thus, \mathbb{Z}_n is a semigroup under multiplication.

Step 3: Proving Distributivity of Multiplication over Addition

Finally, we show that multiplication distributes over addition in \mathbb{Z}_n . For $[a], [b], [c] \in \mathbb{Z}_n$, we need to prove that

$$[a] \cdot ([b] + [c]) = [a] \cdot [b] + [a] \cdot [c].$$

We have

$$[a] \cdot ([b] + [c]) = [a] \cdot [b + c] = [a(b + c)] = [a \cdot b + a \cdot c] = [a \cdot b] + [a \cdot c].$$

Thus, multiplication distributes over addition.

Since \mathbb{Z}_n satisfies the properties of a commutative group under addition, a semigroup under multiplication, and distributivity of multiplication over addition, we conclude that \mathbb{Z}_n is a ring.