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12 Residue Classes

In modular arithmetic, a residue class is a set of integers that are congruent to each other modulo
a given number. When working with congruences, these residue classes help us group numbers

that share certain properties under a modulo operation.

Defintion Residue Class of @ modulo m

Definition 12.1. Let m > 0 be given. For each integer a, we define
lalm=a={zx:2=a (modm)}.

In other words, [a],, or a is the set of all integers that are congruent to a modulo m. We
call [a],, the residue class of @« modulo m. Some people also call [a],, the congruence

class or equivalence class of a modulo m.

Example 12.1. Consider m = 5 and look at the residue class of 2 mod 5. We are looking for

all integers that leave the same remainder as 2 when divided by 5. These integers are:

{..,—13,-8,-3,2,7,12,17,.. .}

Thus, the residue class of 2 modulo 5 is:

2=1[2s=1{..,—13,-8,-3,2,7,12,17,...}

Similarly, the residue class of 3 mod 5 would be:

3=[3s=1{...,-7,-2,3,8,13,18,...}
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Theorem 12.1. For m > 0, we have
a=lal, ={mq+alqelZ}.
Proof.
r€lalm <= r=a (modm) <= m|(r—a) <= z—a=mqforsomeq cZ

<= x = mq + a for some q € Z.

U
Theorem 12.2. For a given modulus m > 0, we have:
[a]m = [b]m <= a=b (modm).
Proof. “=" Assume [a] = [b]. Since a = a (mod m), we have a € [a]. Since [a] = [b], we

have a € [b]. By the definition of [b], this gives a = b (mod m).

“<=" Assume a = b (mod m). We must prove that the sets [a] and [b].

Let z € [a]. Then z = a (mod m). Since @ = b (mod m), by transitivity, x = b (mod m),
sox € [b].

Conversely, if z € [b], then z = b (mod m). By symmetry, since a = b (mod m), we also
have b = a (mod m). Thus, by transitivity, x = a (mod m), and so = € [a].

This proves that [a] = [b]. O

Distinct Residue Classes modulo m

Theorem 12.3. Given m > 0, there are exactly m distinct residue classes modulo m,

namely,

[0], [1],[2], ..., [m — 1].
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12.1 7Z,, and Complete Residue Systems

Defintion Set of All Residue Classes

Definition 12.2. We define

L = {[d] | a € Z},

that is, Z,, is the set of all residue classes modulo m. We call (Z,,,+,-) the ring of

integers modulo m.

or

Example 12.2. * Form = 2:

e Form = 3:

e Form = 4:

e Form = 5:

Definition 12.3. A set of m integers

{ao,CLl, . ,am,l}

is called a complete residue system modulo m if

L = {laol, [aa], - - [am—]}-
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12.2 Addition and Multiplication in Z,,

Definition 12.4. For [a], [b] € Z,,, we define

[a] + [b] = [a + 0]

and

so we can also write

and

Example 12.3. Take m = 151. Then 150 = —1 (mod 151) and 149 = —2 (mod 151), so

[150][149] = [-1][-2] = [2]
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and
[150] + [149] = [—1] + [-2] = [-3] = [148]
since 148 = —3 (mod 151).
Example 12.4. Addition and Multiplication Tables for Z,
Addition Table
+10 1 2 3
0/0 1 2 3
111230
212301
313 1 2
Multiplication Table
012 3
0/0 000
110 12 3
210 2 0 2
310 3 21
Theorem 12.5. Z,, is a ring for any positive integer n.
Proof. Let n be a positive integer. Define Z,, = {[0], [1],[2],...,[n — 1]}.

Step 1: Proving 7Z,, is a Commutative Group under Addition

1. Closure under addition: V|a

|, [b] € Z,,, we have

[a] + [b] = [a + 0]

(mod n).
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Since a + b is an integer, [a + b] € Z,, Therefore, Z, is closed.

2. Associativity of addition: For [a], [b], [] € Z,,, we have

([a] + [0) +[e] = [a+ 0] + [c] = [a+ b+ o] = [a] + [b+ ] = [a] + ([b] + [¢])-

Therefore, addition is associative.

3. Commutativity of addition: For [a], [b] € Z,, we have

[a] +[b] = [a+b] = [b+a] = [b] + [a].

Thus, addition is commutative.

4. Identity: The element [0] € Z, is identity because for any [a| € Z,,, we have

[a] +[0] = [a + 0] = [a].

5. Inverse: For each [a] € Z,, there exists an element [b] € Z,, such that

Therefore, every element has an additive inverse.

Thus, Z,, is a commutative group under addition.
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Step 2: Proving Z,, is a Semigroup under Multiplication

1. Closure under multiplication: For any [al, [b] € Z,, we have

[a] - [b] =[a-b] (modn).

Since a - b is an integer, [a - b] € Z,,. Therefore, Z, is closed.

2. Associativity of multiplication: For [a], [b], [c] € Z,, we have

([a] - b)) - [] = la-b] - [c] = [a-b-c] = [a] - [b- ] = [a] - ([b] - [c]).

Therefore, multiplication is associative.

Thus, Z,, 1s a semigroup under multiplication.

Step 3: Proving Distributivity of Multiplication over Addition

Finally, we show that multiplication distributes over addition in Z,,. For [a], [b], [c] € Z,, we

need to prove that

We have

o] - (b] + [d) = la] - b+ ] = [ab+ )] =[a-b+a-] =[a-b] +][a-c].

Thus, multiplication distributes over addition.
Since Z,, satisfies the properties of a commutative group under addition, a semigroup under
multiplication, and distributivity of multiplication over addition, we conclude that Z,, is a ring.

]
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