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12 Residue Classes

Inmodular arithmetic, a residue class is a set of integers that are congruent to each other modulo

a given number. When working with congruences, these residue classes help us group numbers

that share certain properties under a modulo operation.

Defintion Residue Class of a modulo m

Definition 12.1. Let m > 0 be given. For each integer a, we define

[a]m = ā = {x : x ≡ a (mod m)}.

In other words, [a]m or ā is the set of all integers that are congruent to a modulo m. We

call [a]m the residue class of a modulo m. Some people also call [a]m the congruence

class or equivalence class of a modulo m.

Example 12.1. Consider m = 5 and look at the residue class of 2 mod 5. We are looking for

all integers that leave the same remainder as 2 when divided by 5. These integers are:

{. . . ,−13,−8,−3, 2, 7, 12, 17, . . .}

Thus, the residue class of 2 modulo 5 is:

2̄ = [2]5 = {. . . ,−13,−8,−3, 2, 7, 12, 17, . . .}

Similarly, the residue class of 3 mod 5 would be:

3̄ = [3]5 = {. . . ,−7,−2, 3, 8, 13, 18, . . .}
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Theorem 12.1. For m > 0, we have

ā = [a]m = {mq + a | q ∈ Z}.

Proof.

x ∈ [a]m ⇐⇒ x ≡ a (mod m) ⇐⇒ m | (x− a) ⇐⇒ x− a = mq for some q ∈ Z

⇐⇒ x = mq + a for some q ∈ Z.

Theorem 12.2. For a given modulus m > 0, we have:

[a]m = [b]m ⇐⇒ a ≡ b (mod m).

Proof. “⇒” Assume [a] = [b]. Since a ≡ a (mod m), we have a ∈ [a]. Since [a] = [b], we

have a ∈ [b]. By the definition of [b], this gives a ≡ b (mod m).

“⇐” Assume a ≡ b (mod m). We must prove that the sets [a] and [b].

Let x ∈ [a]. Then x ≡ a (mod m). Since a ≡ b (mod m), by transitivity, x ≡ b (mod m),

so x ∈ [b].

Conversely, if x ∈ [b], then x ≡ b (mod m). By symmetry, since a ≡ b (mod m), we also

have b ≡ a (mod m). Thus, by transitivity, x ≡ a (mod m), and so x ∈ [a].

This proves that [a] = [b].

Distinct Residue Classes modulo m

Theorem 12.3. Given m > 0, there are exactly m distinct residue classes modulo m,

namely,

[0], [1], [2], . . . , [m− 1].
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12.1 Zm and Complete Residue Systems
Defintion Set of All Residue Classes

Definition 12.2. We define

Zm = {[a] | a ∈ Z},

that is, Zm is the set of all residue classes modulo m. We call (Zm,+, ·) the ring of

integers modulom.

Zm = {[0], [1], . . . , [m− 1]}.

or

Zm = {0̄, 1̄, . . . , m− 1}.

Example 12.2. • For m = 2:

Z2 = {[0], [1]}

• For m = 3:

Z3 = {[0], [1], [2]}

• For m = 4:

Z4 = {[0], [1], [2], [3]}

• For m = 5:

Z5 = {[0], [1], [2], [3], [4]}

Definition 12.3. A set of m integers

{a0, a1, . . . , am−1}

is called a complete residue system modulo m if

Zm = {[a0], [a1], . . . , [am−1]}.
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12.2 Addition and Multiplication in Zm

Definition 12.4. For [a], [b] ∈ Zm, we define

[a] + [b] = [a+ b]

and

[a] · [b] = [ab].

Remark 12.1. For m = 5, we have

[2] + [3] = [5], and [2] · [3] = [6].

Since 5 ≡ 0 (mod 5) and 6 ≡ 1 (mod 5), we obtain

[5] = [0] and [6] = [1],

so we can also write

[2] + [3] = [0], [2] · [3] = [1].

Theorem 12.4. For any modulus m > 0, if [a] = [b] and [c] = [d], then

[a] + [c] = [b] + [d]

and

[a] · [c] = [b] · [d].

Example 12.3. Take m = 151. Then 150 ≡ −1 (mod 151) and 149 ≡ −2 (mod 151), so

[150][149] = [−1][−2] = [2]
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and

[150] + [149] = [−1] + [−2] = [−3] = [148]

since 148 ≡ −3 (mod 151).

Example 12.4. Addition and Multiplication Tables for Z4

Addition Table

+ 0̄ 1̄ 2̄ 3̄

0̄ 0̄ 1̄ 2̄ 3̄

1̄ 1̄ 2̄ 3̄ 0̄

2̄ 2̄ 3̄ 0̄ 1̄

3̄ 3̄ 0̄ 1̄ 2̄

Multiplication Table

· 0̄ 1̄ 2̄ 3̄

0̄ 0̄ 0̄ 0̄ 0̄

1̄ 0̄ 1̄ 2̄ 3̄

2̄ 0̄ 2̄ 0̄ 2̄

3̄ 0̄ 3̄ 2̄ 1̄

Theorem 12.5. Zn is a ring for any positive integer n.

Proof. Let n be a positive integer. Define Zn = {[0], [1], [2], . . . , [n− 1]}.

Step 1: Proving Zn is a Commutative Group under Addition

1. Closure under addition: ∀[a], [b] ∈ Zn, we have

[a] + [b] = [a+ b] (mod n).
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Since a+ b is an integer, [a+ b] ∈ Zn, Therefore, Zn is closed.

2. Associativity of addition: For [a], [b], [c] ∈ Zn, we have

([a] + [b]) + [c] = [a+ b] + [c] = [a+ b+ c] = [a] + [b+ c] = [a] + ([b] + [c]).

Therefore, addition is associative.

3. Commutativity of addition: For [a], [b] ∈ Zn, we have

[a] + [b] = [a+ b] = [b+ a] = [b] + [a].

Thus, addition is commutative.

4. Identity: The element [0] ∈ Zn is identity because for any [a] ∈ Zn, we have

[a] + [0] = [a+ 0] = [a].

5. Inverse: For each [a] ∈ Zn, there exists an element [b] ∈ Zn such that

[a] + [b] = [0].

The additive inverse of [a] is [n− a], since

[a] + [n− a] = [a+ (n− a)] = [n] = [0].

Therefore, every element has an additive inverse.

Thus, Zn is a commutative group under addition.
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Step 2: Proving Zn is a Semigroup under Multiplication

1. Closure under multiplication: For any [a], [b] ∈ Zn, we have

[a] · [b] = [a · b] (mod n).

Since a · b is an integer, [a · b] ∈ Zn. Therefore, Zn is closed.

2. Associativity of multiplication: For [a], [b], [c] ∈ Zn, we have

([a] · [b]) · [c] = [a · b] · [c] = [a · b · c] = [a] · [b · c] = [a] · ([b] · [c]).

Therefore, multiplication is associative.

Thus, Zn is a semigroup under multiplication.

Step 3: Proving Distributivity of Multiplication over Addition

Finally, we show that multiplication distributes over addition in Zn. For [a], [b], [c] ∈ Zn, we

need to prove that

[a] · ([b] + [c]) = [a] · [b] + [a] · [c].

We have

[a] · ([b] + [c]) = [a] · [b+ c] = [a(b+ c)] = [a · b+ a · c] = [a · b] + [a · c].

Thus, multiplication distributes over addition.

Since Zn satisfies the properties of a commutative group under addition, a semigroup under

multiplication, and distributivity of multiplication over addition, we conclude that Zn is a ring.
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