16 Discrete Logarithm Problem The **Discrete Logarithm Problem** (DLP) is a fundamental mathematical problem in cryptography. ## 16.1 Definition of the Discrete Logarithm Problem Let p be a large prime, there exists a **primitive root** g in the field \mathbb{F}_p . This means that every nonzero element of \mathbb{F}_p can be written as some power of g. In particular, by Fermat's Little Theorem: $$g^{p-1} \equiv 1 \pmod{p}$$ and no smaller positive power of g is congruent to 1. Thus, the elements of the multiplicative group \mathbb{F}_p are: $$1, g, g^2, g^3, \dots, g^{p-2}.$$ ## Definition of the Discrete Logarithm Problem (DLP) **Definition 16.1.** Let g be a primitive root of \mathbb{F}_p , and let h be a nonzero element of \mathbb{F}_p . The **Discrete Logarithm Problem** is the problem of finding an exponent x such that: $$g^x \equiv h \pmod{p}$$. The number x is called the **discrete logarithm** of h to the base g and is denoted by: $$\log_q(h)$$. ## 16.2 Applications in Cryptography The Discrete Logarithm Problem forms the basis for several cryptographic protocols, include Diffie-Hellman Key Exchange, ElGamal Encryption and Digital Signature Algorithms