

11 More Properties of Congruences

The Inverse of a Modulo m

Theorem 11.1. Let $m \ge 2$. If a and m are relatively prime $(\gcd(a, m) = 1)$, then there exists a unique integer a^{-1} such that

$$aa^{-1} \equiv 1 \pmod{m}$$
 and $0 < a^{-1} < m$.

Proof. Since gcd(a, m) = 1. Then there exist integers s and t such that

$$as + mt = 1. \Rightarrow as - 1 = m(-t),$$

 $\Rightarrow m \mid (as-1) \Rightarrow as \equiv 1 \pmod{m}$. Thus, $a^{-1} = s \mod m$ satisfies $0 < a^* < m$ and we have:

$$aa^{-1} \equiv 1 \pmod{m}$$
.

To prove uniqueness, Let there exists an integer c such that $ac \equiv 1 \pmod{m}$ and 0 < c < m. From this, we have:

$$ac \equiv aa^{-1} \pmod m \Rightarrow c \equiv a^{-1} \pmod m.$$

Proving the uniqueness.

Example 11.1. Let m=15 and a=2. We find the integer a^{-1} such that $a \cdot a^{-1} \equiv 1 \pmod{15}$.

$$2 \cdot 0 \not\equiv 1 \pmod{15}$$
, $2 \cdot 1 \not\equiv 1 \pmod{15}$, $2 \cdot 2 \not\equiv 1 \pmod{15}$,

$$2 \cdot 3 \not\equiv 1 \pmod{15}$$
, $2 \cdot 4 \not\equiv 1 \pmod{15}$, $2 \cdot 5 \not\equiv 1 \pmod{15}$,

$$2 \cdot 6 \not\equiv 1 \pmod{15}$$
, $2 \cdot 7 \not\equiv 1 \pmod{15}$, $2 \cdot 8 \equiv 1 \pmod{15}$,

because $15 \mid (16-1)$. Thus, we can take $a^- = 8$.

Remark 11.1. We call a^{-1} the inverse of a modulo m.

Theorem 11.2. Let m > 0. If $ab \equiv 1 \pmod{m}$, then both a and b are relatively prime to m, i.e., gcd(a, m) = 1 and gcd(b, m) = 1.

Corollary 11.1. A number a has an inverse modulo m if and only if a and m are relatively prime, i.e., gcd(a, m) = 1.

Theorem 11.3. Let m > 0. If gcd(c, m) = 1, then $ca \equiv cb \pmod{m}$ implies $a \equiv b \pmod{m}$.

Theorem 11.4. *If* c > 0 *and* m > 0*, then*

$$a \equiv b \pmod{m} \iff ca \equiv cb \pmod{cm}$$
.

Theorem 11.5. If m > 0 and $a \equiv b \pmod{m}$, then

$$gcd(a, m) = gcd(b, m).$$

11.1 Finding Modular Inverses Using the Extended Euclidean Algorithm

Given an integer a and a modulus m, the modular inverse of a modulo m is an integer x such that:

$$ax \equiv 1 \pmod{m}$$
 (8)

The modular inverse exists if and only if gcd(a, m) = 1. We use the **Extended Euclidean** Algorithm to compute it.

Example 11.2. Find the inverse of 7 modulo 20.

Sol. We apply the Euclidean algorithm:

$$20 = 2 \times 7 + 6$$

$$7 = 1 \times 6 + 1$$

$$6 = 6 \times 1 + 0$$

Since gcd(7, 20) = 1, an inverse exists.

Now, we work backward:

$$1 = 7 - 1 \times 6$$

$$= 7 - 1(20 - 2 \times 7)$$

$$= 7 - 20 + 2 \times 7$$

$$= 3 \times 7 - 1 \times 20$$

Thus, $7^{-1} \equiv 3 \pmod{20}$.

Example 11.3. Find the inverse of 11 modulo 26.

Sol. Using the Euclidean algorithm:

$$26 = 2 \times 11 + 4$$
$$11 = 2 \times 4 + 3$$
$$4 = 1 \times 3 + 1$$
$$3 = 3 \times 1 + 0$$

Since gcd(11, 26) = 1, an inverse exists.

Working backward:

$$1 = 4 - 1 \times 3$$

$$= 4 - 1(11 - 2 \times 4)$$

$$= 3 \times 4 - 1 \times 11$$

$$= 3(26 - 2 \times 11) - 1 \times 11$$

$$= 3 \times 26 - 7 \times 11$$

Thus, $11^{-1} \equiv -7 \equiv 19 \pmod{26}$.

Example 11.4. Find the inverse of 17 modulo 43

Sol. Using the Euclidean algorithm:

$$43 = 2 \times 17 + 9$$

 $17 = 1 \times 9 + 8$
 $9 = 1 \times 8 + 1$
 $8 = 8 \times 1 + 0$

Since gcd(17, 43) = 1, an inverse exists.

Working backward:

$$1 = 9 - 1 \times 8$$

$$= 9 - 1(17 - 1 \times 9)$$

$$= 2 \times 9 - 1 \times 17$$

$$= 2(43 - 2 \times 17) - 1 \times 17$$

$$= 2 \times 43 - 5 \times 17$$

Thus, $17^{-1} \equiv -5 \equiv 38 \pmod{43}$.

11.2 Exercises of More Properties of Congruences

Exercises

- 1. Show that the inverse of 2 modulo 7 is not the inverse of 2 modulo 15.
- 2. Let m > 0. If $ab \equiv 1 \pmod{m}$, then both a and b are relatively prime to m.
- 3. If c > 0 and m > 0, then $a \equiv b \pmod{m} \iff ca \equiv cb \pmod{cm}$.
- 4. If there exists a^{-1} find for each following
 - (a) $11^{-1} \mod 43$, (b) $29^{-1} \mod 78$, (c) $6^{-1} \mod 19$.