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1. Medical Image Texture Analysis  

medical imaging is conventionally assessed visually or qualitatively, with 

a lot of the latent information in the images remaining unused. One way 

of accessing this hidden information is by using radiomics, which is the 

extraction of quantitative information from clinical imaging. In particular, 

heterogeneity in imaging data is not adequately assessed on visual 

assessment. Intratumoral heterogeneity is associated with tumor 

aggressiveness and poor patient outcomes. Some radiomic metrics, 

particularly texture analysis metrics, have been reported to assess 

intratumoral heterogeneity in studies assessing the diagnosis, prognosis, 

and treatment response of cancer.  Typical radiomic assessment includes 

analysis of texture, shape, and size. The underlying assumption of the 

technique is that the grayscale values creating the image of the tumor and 

the spatial and temporal in terrelationships of these values reflect the 

phenotypic variations of the tumor, which are indicative of genetic and 

other molecular variations.  Although there is a lot of interest in using 

radiomics for noninvasive tumor assessment, poor standardization and 

generalization of radiomic results hinder the translation of radiomics in 

clinical practice.  

 

2. Texture Analysis  

In material science, texture is defined as a measure of the variation of a 

surface; a rough-textured material would have a high rate of change in the 

high and low points of a surface, compared with a smooth-textured 

material. In radiology, image texture refers to differences in the 

grayscales representing an ROI. The image of a rough textured material 

would have a high rate of change in the high and low points of a surface 

(the grayscale value), compared with a smooth-textured material. On a 

simplistic level, a typical radiomics workflow comprises four modules: 

image acquisition, image segmentation, feature extraction, and statistical 

analysis (Fig. 1). Additional modules, such as image registration, data 

formatting, de-noising, and other modules, are used; however, they are 

modality and application specific.  



 

2.1. Image Acquisition  

Image acquisition is the first stage of the radiomics workflow. Currently 

available clinical imaging modalities allow wide variations in acquisition 

and image reconstruction protocols. This is not a limitation for visual or 

qualitative evaluation of imaging. However, when images are 

quantitatively assessed to extract meaningful data, variations in 

acquisition and image reconstruction parameters lead to inconsistent 

findings between different datasets, particularly in multicenter studies. 

Image Segmentation The image segmentation step involves identifying an 

ROI, which could be done automatically, semi automatically, or 

manually. Although manual segmentation is accurate, it is more 

tedious and subjective. Automatic segmentation is objective but error 

prone, especially when imaging artifacts and noise are encountered. Some 

of the commonly used automated segmentation algorithms include active 

contour–based , level set–based , and region- and graph-based methods. 

No established segmentation standard currently exists. More recently, 

deep learning techniques, such as convolutional 

                       

 

Fig. 1—Schematic of typical radiomics workflow showing four basic 

modules. 

  

 



 

A. The structural methods 

This represents texture by the use of well-defined primitives. In other 

words, a square object is represented in terms of the straight lines or 

primitives that form its border. The advantage of these methods are that 

they provide a good symbolic description of the image. On the other hand, 

it is better for the synthesis of an image than for its analysis. The theory 

of mathematical morphology is a powerful tool for structural analysis. 

B. The model-based methods  

Here an attempt is made to represent texture in an image using 

sophisticated mathematical models (such as fractal or stochastic). The 

model parameters are estimated and used for the image analysis. The 

disadvantage is the computational complexity involved in the estimation 

of these parameters.  

C. The statistical approaches.  

These are based on representations of texture using properties governing 

the distribution and relationships of grey-level values in the image. These 

methods normally achieve higher discrimination indexes than the 

structural or transform methods. The transform methods The texture 

properties of the image may be analyzed in a different space, such as the 

frequency or the scale space. These methods are based on the Fourier, 

Gabor or Wavelet transform. 
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D. The Wavelet transform 

It is the most widely used because of the ease with which it may be 

adjusted to the problem in question. Texture parameters Medical images 

possess a vast amount of texture information relevant to clinical practice. 

For example, current magnetic resonance (MR) images of tissues are not 

capable of providing microscopic information that can be assessed 



visually. However, histological alterations present in some illnesses may 

bring about texture changes in the MR image that are amenable to 

quantification through texture analysis. This has been successfully 

applied to the classification of pathological tissues from the liver, 

thyroid, breasts, kidneys, prostate, heart, brain and lungs. We describe 

the main parameters used in texture analysis, selecting four categories of 

parameter from the statistical class (which is the most widely used for 

medical applications), one from the model-based class and one from the 

transform class. The structural class is omitted because we did not find 

any example of its application to medical images. The most commonly 

used texture parameters come from six main categories.  

1. Histogram (statistical class)  

2. Absolute gradient (statistical class)  

3. Run-length matrix (statistical class) 

 4. Co-occurrence matrix (statistical class)  

5. Auto-regressive model (model class) 

 6. Wavelets (transform class). 

The texture of images refers to the appearance, structure and 

arrangement of the parts of an object within the image. Images used for 

diagnostic purposes in clinical practice are digital. A two dimensional 

digital image is composed of little rectangular blocks or pixels (picture 

elements), and a three-dimensional digital image is composed of little 

volume blocks called voxels (volume elements); each is represented by a 

set of coordinates in space, and each has a value, representing the grey-

level intensity of that picture or volume element in space. Since most 

medical images are two-dimensional we will restrict the discussion to 

pixels, bearing in mind that the extension to voxels and volumetric 

images is straightforward. We may attribute the texture concept in a 

digital image to the distribution of grey-level values among the pixels of a 

given region of interest in the image. One way of depicting this is to 

display the digital data as a three-dimensional map based on the pixel 

values, as shown in Fig. 2. Thus, texture analysis is in principle a 

technique for evaluating the position and intensity of signal features, i.e. 

pixels, and their grey-level intensity in digital images. Texture features 



are, in fact, mathematical parameters computed from the distribution of 

pixels, which characterize the texture type and thus the underlying 

structure of the objects shown in the image. According to the methods 

employed to evaluate the inter-relationships of the pixels, the forms of 

texture analyses are categorized as structural, model-based, statistical and 

transform methods. 

Figure 2 (a) Coronal slice of T1-weighted cerebral MRI. (b) 

Corresponding three-dimensional map based on the pixel values. 

2.2. Image Segmentation for texture images  

The image segmentation step involves identifying an ROI, which could 

be done automatically, semiautomatically, or manually. Although manual 

segmentation is accurate, it is more tedious and subjective. Automatic 

segmentation is objective but error prone, especially when imaging 

artifacts and noise are encountered. Some of the commonly used 

automated segmentation algorithms include active contour–based , level 

set–based , and region- and graph-based methods . No established 

segmentation standard currently exists. More recently, deep learning 

techniques, such as convolutional neural networks, have been used for 

segmentation. Texture analysis has been incorporated into the radiomics 

workflow at various stages. At the preprocessing stage, images could be 

segmented into contiguous regions on the basis of the texture properties 

of each region; at the feature extraction and classification stages, texture 

features could provide cues for classifying patterns or identifying objects. 



 

2.3. Feature Extraction  

Statistical, transform-based, and structural-based texture assessment are 

the three main approaches used to describe texture (Table 1). Statistical 

characterization of texture is based on the assessment of texture as a 

measure of the statistical properties of the gray levels creating the ROI. 

These properties are conventionally computed from first order statistical 

methods, such as histogram analysis in which the analysis is based on 

grayscale values only and spatial information is lost. These first-order 

methods and analysis are relatively easier to implement and understand. 

Among the higher-order texture methods, which include both grayscale 

values and spatial orientation, are the gray-level co-occurrence matrix and 

the gray-level difference matrix. In recent studies, gray-level run-length 

matrix metrics and gray-level size zone matrix metrics have also been 

reported. Transform-based analysis involves extraction of texture metrics 

on the basis of properties of a wave spectrum and describes the global 

periodicity of the gray levels of a surface by identifying high-energy 

peaks in the spectrum and their variations. Structural methods involve 

techniques of decomposing an image into basic units and identifying the 

rules required to construct that given image from these basic units. Some 

examples of structural methods of texture assessment include fractal 

analysis. The use of a large number of radiomic metrics and the lack of 

uniformity of these measures and their selective use, which may be 

correlated, have led to studies with results that are nonreproducible and 

noncomparable  

TABLE 1: Texture Metrics Extracted in the Radiomic Analysis of 

Imaging Data 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical Analysis  

The choice of statistical methods used in radiomics depends on multiple 

factors (e.g., whether the radiomic features are used as the outcome or the 

predictor or whether radiomics analysis is part of a pilot or confirmative 

study). When radiomic features are used as the outcome, the assumption 

of the data normality will need to be tested first. Statistical bias can be 

introduced on the basis of the choice of the statistical tests used as well as 

on the basis of the inherent noise and skewness of the medical data. Some 

of the commonly used statistical tests for normality include the t test, 

ANOVA.  

A number of radiomics studies include scans from different centers. 

Although this increases the cohort size, it increases the number of 

variables and confounds the imaging data, leading to systematic errors 

and poor reliability. To this end, reliable metrics (i.e., metrics that are 

reproducible [i.e., their value remains unchanged across different 



scanners of a given imaging modality] and repeatable [i.e., their value 

remains the same when repeated multiple times on a single scanner]) 

need to be identified  (Fig. 3). The two popular statistical indexes to 

assess reliability include the intraclass correlation coefficient (ICC) and 

the concordance correlation coefficient. When reproducibility alone is 

assessed without repeated measures for a given scanner or modality, the 

ICC2 (two-way random ICC) and ICC3 (two-way mixed ICC) are 

identical to the concordance correlation coefficient. However, if 

reproducibility is assessed with repeated measures, which is equivalent to 

assessing reproducibility and repeatability at once, only the ICC3 is 

identical to the concordance correlation coefficient. In general, the 

concordance correlation coefficient or the ICC2 and ICC3 are the 

preferred assessment methods, with a heat map used as a visualization 

tool to illustrate the pattern of reliability.  

 

 

 

 


