
Application Development

Lecture 3

Core Widgets I – Stateless & Stateful 

Widgets, Widget Tree, and UI Composition

Asst. Lect. Ali Al-khawaja

Class Room



Lecture Contents Table

1 Introduction & Lecture 

Objectives

2 Overview of Flutter Widgets 3 Stateless Widgets – Concepts & 

Examples

4 Stateful Widgets – Concepts & 

Lifecycle

5 The Widget Tree and UI 

Composition

6 Best Practices for UI 

Composition

7 Activities (brainstorming, 

discussion, group tasks, paper & 

pen, raise-hand)

8 Summary & Takeaways 9 Homework Assignment



General & Behavioral Objectives

General Goal:

Provide students with a deep understanding of Flutter's widget 

system and the fundamental difference between Stateless and 

Stateful widgets, enabling them to design interactive, maintainable 

UIs.

Behavioral Objectives:

By the end of this lecture, students will be able to:

1. Define the role of widgets as the core building blocks of Flutter 

UIs.

2. Differentiate between Stateless and Stateful widgets in terms of 

structure and use cases.

3. Illustrate the hierarchy of a widget tree and explain how 

composition creates complex UIs.

4. Analyze UI requirements and decide whether a widget should be 

stateless or stateful.

5. Demonstrate understanding through class activities and group 

discussion.



Introduction
Flutter apps are entirely composed of widgets—from the root app to 

every text label and layout container.

Understanding widgets is essential for building any Flutter UI, whether 

simple or complex.

Today we focus on the two core widget types—Stateless and 

Stateful—and the way they form a widget tree that defines the 

interface.



What Is a Widget?

Definition:

A widget is a declarative description of part of a user interface.

Everything is a widget:

buttons, text, layout structures, even the entire app.

Declarative approach:

Widgets describe how the UI should look, not how to draw each 

pixel.

Rendering:

Flutter's rendering engine converts these descriptions into actual 

pixels.



Activity 1 – Brainstorming

"List as many UI elements as you can that 

could be represented as widgets in a mobile 

application."



Stateless Widgets: Concept

Immutable UI Elements

Represent parts of the UI that do not 

change once built.

Final Properties

Immutable: properties are final after 

construction.

Common Examples

Examples: static text labels, icons, 

decorative images.



Stateless Widget Structure

Typical pattern:

class MyTitle extends StatelessWidget {  @override  
Widget build(BuildContext context) {    return 
Text('Welcome to Flutter!');  }}

Build method runs only when the widget is inserted or its parent changes.



Expanded Stateless Examples

Product Descriptions
Display static product descriptions.

Design Elements
Constant design elements like headers, 

logos, or background graphics.

Performance Benefits
Efficient because Flutter skips 

unnecessary rebuilds.



Activity 2 – Paper & Pen

Write down one real-life screen from any 

app that can be built entirely with 

Stateless widgets and explain why state 

changes are unnecessary.



Stateful Widgets: Concept

Dynamic UI Elements

• Represent UI elements that change dynamically in 

response to user actions or data updates.

• Contain a State object separate from the widget configuration.



Anatomy of a Stateful Widget
Two classes required:

class Counter extends StatefulWidget {
  @override
  _CounterState createState() => _CounterState();
}

class _CounterState extends State<Counter> {
  int count = 0;
  @override
  Widget build(BuildContext context) {
    return Text('Count: $count');
  }
}

StatefulWidget
defines configuration

State
holds mutable data and the build() method



Stateful Lifecycle Methods

initState()

initialise data/resources

setState()

request UI rebuild when state changes

didChangeDependencies()

respond to changes in inherited widgets

dispose()

clean up resources



Activity 3 – Class Discussion

"Why must the UI update immediately 

when user interaction occurs, and how 

does setState() enable this?"



Comparing Stateless & Stateful

Feature Stateless Stateful

Data Changes No Yes

Rebuild Trigger Parent change only setState / external triggers

Complexity Simple More complex, needs State object

Performance Very fast Slight overhead



When to Choose Which

Use Stateless when:

UI depends solely on final parameters.

Use Stateful when:

UI depends on dynamic data, animations, or user input.



Activity 4 – Raise-Hand Quick Quiz

Question:

"Would a login form with live 

validation be Stateless or Stateful? 

Why?"



Widget Tree Fundamentals

Hierarchical Structure

Widgets are arranged in a hierarchical tree.

Root Widget

The root widget is typically MaterialApp or CupertinoApp.

Composition

Each child widget can contain its own children, forming 

complex UIs through composition.



Build Process

Widget Tree Construction

Flutter builds the widget tree from top to bottom.

Layout Constraints

Layout constraints are passed down; sizes flow up.

Painting

The final render tree is drawn to the screen.



Activity 5 – Group Work

Groups of 4–5:

Design a widget tree for a simple "Profile Page" that includes a profile 

image, name, and list of settings. Identify which nodes are Stateless and 

which should be Stateful.



UI Composition

Composition over inheritance

combine small widgets to create rich 

UIs

Reusable custom widgets

improve maintainability

Example

create a UserCard widget reused in 

different screens



Practical Composition Tips

Logical Components

Break UI into logical components.

Performance Optimisation

Use const constructors when possible to improve performance.

Shallow Trees

Keep widget trees shallow when feasible; extract widgets instead of 

deeply nesting.



Advanced Composition Example

Demonstration of a screen built from multiple 

custom widgets (Header, UserList, Footer) to show 

modular design and readability.



Common Mistakes

Overusing Stateful Widgets

Overusing Stateful widgets where 

Stateless is enough → performance 

penalty.

Deep Widget Trees

Deep widget trees without 

refactoring → harder maintenance.

setState() Errors

Forgetting to call setState() correctly 

→ UI not updating.



Best Practices

Start Simple

Start with Stateless, switch to Stateful 

only when necessary.

Extract Early

Extract widgets early to keep code readable.

Use Keys Wisely

Use keys (Key) wisely when building 

lists or dynamic UI elements.



Activity 7 – Homework (Google Classroom)

Task:

1. Create a small Flutter UI demonstrating one Stateless and one Stateful widget.

2. Explain in ~150 words when each widget is appropriate and how they interact in the widget tree.



Summary & Key Takeaways

Everything is a widget

in Flutter.

Stateless vs Stateful:

choose based on data mutability.

The widget tree

is the foundation of UI composition.

Effective composition

ensures scalability and maintainability.



Conclusion
Today we explored:

Core concept of widgets as Flutter's fundamental building blocks.

Detailed differences between Stateless and Stateful widgets.

Hierarchical widget tree and UI composition strategies.

Activities to reinforce conceptual understanding and 
practical design thinking.



Thank you…

Any questions??

حولالراجعةالتغذيةنموذجلتعبئةQR Codeالسريعةالاستجابةرمزمسحيرجى

.القادمةالمحاضراتلتحسينمهمةملاحظاتكم.المحاضرة

My google site


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

