
Application Development

Lecture 1

Introduction to Flutter & Cross-Platform

App Development

Asst. Lect. Ali Al-khawaja

Class Room

Welcome & Course Context

Warm Welcome

Welcome to Application Development (Flutter). This course will transform how you think

about mobile development, teaching you to create powerful apps that work seamlessly across

multiple platforms.

Purpose of Today

We'll introduce the course structure, explain its critical importance in today's mobile-driven

world, and provide a detailed understanding of cross-platform development principles that will

guide your learning journey.

Big Picture Vision

By course completion, you'll master how a single Dart codebase can create high-quality apps

for Android, iOS, Web, and Desktop—revolutionising your development workflow and career

prospects.

General Course Objective

To equip students with the theoretical knowledge and practical skills to

design, develop, and deploy cross-platform mobile applications using

the Flutter framework and Dart programming language, whilst

strengthening problem-solving abilities, teamwork, and professional

software-engineering practices.

This comprehensive objective encompasses both technical mastery and

professional development skills essential for modern software engineering

careers. You'll learn to think systematically about application architecture

whilst developing the collaborative skills valued by industry employers.

Why This Course Matters

Market Reality

Companies need fast, cost-effective

delivery on multiple platforms. The

ability to develop once and deploy

everywhere has become a

competitive advantage that

employers actively seek in new

graduates.

User Experience

Consistent UI/UX across devices is

no longer optional—it's expected.

Users demand seamless experiences

whether they're on Android, iOS, or

web platforms.

Career Edge

Skills in Flutter and Dart are highly valued by employers and essential for

start-up product development. This course positions you at the forefront of

modern app development.

Learning Outcomes for This Lecture
By the end of this lecture, you will demonstrate mastery of fundamental cross-

platform development concepts and be prepared to begin hands-on Flutter

development.

1
Cross-Platform Understanding

Explain cross-platform development and its technical motivations,

including performance trade-offs and business benefits.

2
Flutter Architecture

Describe Flutter's architecture and its major components, understanding

how they work together to deliver native-like performance.

3
Environment Setup

List and sequence the steps to set up the Flutter environment, ensuring

you're prepared for upcoming practical sessions.

4
Active Participation

Participate effectively in all class activities within a blended-learning

model, developing collaboration skills essential for software development

teams.

Lecture Contents

1Introduction to Cross-Platform Development
Foundation concepts and industry context

2 Flutter Overview & Advantages
Why Flutter leads the cross-platform revolution

3Flutter Architecture
Deep dive into technical components

4 Dart Language Primer
Essential language features and concepts

5Development Tools & Environment Setup
Practical preparation for development

6 First Flutter Project Walkthrough
Hands-on project creation and exploration

7Interactive Theory-Based Activities
Collaborative learning and concept reinforcement

Concept of Cross-Platform
Development

Definition

Build a single application capable of running on multiple operating

systems—Android, iOS, Web, Desktop—using one unified codebase.

Philosophy

"Write once, deploy everywhere."

This paradigm shift revolutionises

traditional development

approaches, eliminating the need

to maintain separate codebases for

different platforms whilst

preserving native-like performance

and user experience.

Primary Goal

• Faster delivery cycles

• Reduced development costs

• Consistent user experience

• Simplified maintenance

Why Businesses Need Cross-
Platform Apps

Rapid Release Cycles

Achieve shorter time-to-market by eliminating duplicate development

efforts. Deploy updates simultaneously across all platforms,

maintaining competitive advantage.

Consistent UI/UX

Deliver unified user experiences across diverse devices and operating

systems. Brand consistency strengthens user recognition and

satisfaction.

Lower Maintenance

Avoid the complexity and cost of maintaining two separate native

codebases. Bug fixes and feature updates require half the development

effort.

These advantages translate directly into reduced development costs, faster market

entry, and improved resource allocation—critical factors for both established

companies and start-ups competing in today's fast-paced digital marketplace.

Native vs. Cross-Platform Development

Aspect Native Development Cross-Platform Development

Codebase Separate code for Android & iOS Single shared codebase

Performance Highest possible performance Near-native performance

Development Cost Longer development & higher cost Faster, more cost-efficient

Maintenance Duplicate effort required Unified maintenance approach

Time to Market Slower due to parallel development Significantly faster deployment

Key Insight: Flutter narrows the performance gap whilst preserving speed and cost advantages. Modern cross-platform

frameworks achieve 95%+ native performance for most use cases.

1. Major Frameworks Overview

1. Flutter (Google)

1. Focus of this course. Dart-based framework with exceptional

performance and rich widget library. Compiles to native machine

code.

1. React Native (Meta)

1. JavaScript-based framework leveraging React concepts. Strong

community support but performance limitations compared to Flutter.

1. Xamarin (.NET)

1. Microsoft's C#-based solution. Excellent for enterprises already

invested in .NET ecosystem but more complex setup.

1. Ionic & Kotlin Multiplatform

1. Web-based (Ionic) and Kotlin-based solutions offering different

approaches to cross-platform challenges with varying trade-offs.

Activity 1 – Brainstorming (5 minutes)

"List the biggest challenges developers face when creating apps for

multiple platforms."

What Is Flutter?

Definition and Origin

An open-source UI framework

launched by Google in 2017, aiming to

revolutionize the way beautiful and

custom-designed native applications

(Natively Compiled) are built for

mobile, web, and desktop, all from a

single codebase.

Comprehensive and
Integrated Scope

Flutter enables you to build

applications for Android, iOS, web,

and desktop platforms from a single

Dart codebase. This eliminates the

complexities associated with platform-

specific development while

maintaining native performance

standards.

Programming Model

• Declarative: Defines how the user

interface should look, not how it is

drawn.

• Widget-based: Every element in

Flutter is a composable widget.

• Reactive: The UI automatically

updates with data changes to

provide a seamless experience.

Key Competitive Advantage

Unlike other frameworks that rely on

web views or platform-specific native

components, Flutter renders directly to

the screen using its high-performance

rendering engine, ensuring exceptional

speed and performance.

Key Advantages of Flutter

Single Codebase

Write once, run everywhere. Eliminate duplicate development efforts whilst

maintaining platform-specific optimisations and native integrations where

needed.

Hot Reload & Hot Restart

Instantly reflect UI changes during development. See code modifications in

milliseconds, dramatically accelerating the development and debugging

process.

Native-Like Performance

Compiles to ARM machine code, delivering 60fps animations and smooth user

interactions that rival native applications in performance benchmarks.

Rich Widget Library

Material and Cupertino widgets for beautiful interfaces. Extensive

customisation options enable unique designs whilst maintaining platform

conventions.

Flutter Architecture Overview

Flutter Engine

High-performance rendering and graphics powered by Skia. Written in C++ for

optimal performance, handles low-level rendering, text layout, and file system access.

Framework Layer

Widgets, rendering, animation, and gestures. Provides the reactive programming

model and composable widget system that makes Flutter development intuitive

and powerful.

Dart Runtime

Just-In-Time (JIT) compilation for development hot reload, Ahead-Of-Time

(AOT) compilation for optimised release builds ensuring maximum

performance in production.

Platform Channels

Bidirectional communication with native APIs. Enables access to platform-

specific features like camera, GPS, and notifications whilst maintaining code

sharing benefits.

Flutter Engine in Detail

Core Implementation

Implemented in C++ for high-performance rendering, the

Flutter Engine serves as the foundation that enables Flutter's

exceptional performance characteristics across all supported

platforms.

Key Responsibilities

• Text layout and typography rendering

• 2D graphics acceleration and compositing

• 60fps animation management

• Platform-specific adaptations

Skia Integration

Integrates with Skia graphics library to accelerate rendering

and manage complex layer compositions. This integration

ensures consistent visual output across different platforms and

devices.

Performance Benefits

Direct compilation to machine code eliminates the

performance overhead typical of interpreted frameworks,

delivering rendering performance that matches or exceeds

native applications.

Widget Framework

Everything is a Widget
This fundamental principle drives Flutter's architecture: text elements, buttons,

layout containers, and even the application root are all widgets. This unified

approach creates unprecedented consistency and composability.

Composable Architecture

Widgets combine to form larger, more complex widgets. Small, focused

components can be reused and combined in countless ways, promoting code

reusability and maintainability.

Reactive Programming Model

Widgets automatically rebuild when their data changes, ensuring the UI always

reflects the current application state without manual intervention or complex

update logic.

This widget-centric approach allows complex UIs to be built from small,

reusable pieces, making code more maintainable and enabling rapid UI

iteration during development.

Platform Channels

Bridge Architecture

Platform channels provide a robust

bridge between Dart code and native

platform APIs, enabling Flutter

applications to access device-specific

functionality whilst maintaining a

unified codebase architecture.

Accessible Features

• Camera and photo gallery

• GPS and location services

• Device sensors and hardware

• Push notifications

• Native UI components when

needed

Flexibility Advantage

Provides the flexibility to access any

native functionality without sacrificing

the unified codebase benefits. Custom

platform channels can be created for

proprietary or specialised device

integrations.

Best Practices

Use platform channels judiciously—

most common functionality is already

abstracted through Flutter plugins, and

excessive native integration can

compromise cross-platform benefits.

Rendering Pipeline

Build Widget Tree

Declarative widget descriptions create a tree structure representing the desired UI state and hierarchy.

Create RenderObjects

Widgets instantiate corresponding RenderObjects that handle layout calculations and painting operations.

Layout Calculations

Constraint-based layout system determines exact positioning and sizing of all UI elements efficiently.

Paint with Skia

High-performance Skia engine renders the final visual representation with hardware acceleration.

Display Frame

Composited layers are sent to the display system, achieving smooth 60fps performance.

Understanding this sequence helps diagnose layout and performance issues during development. Each stage is optimised for
efficiency, with Flutter only rebuilding components that have actually changed.

Real-World Adoption

Flutter's enterprise adoption demonstrates its production readiness and scalability. Major companies have chosen Flutter for mission-critical

applications, validating its performance and reliability.

Google Ads

Google's own advertising

platform leverages Flutter for

consistent user experience across

mobile platforms, handling

millions of daily active users.

BMW

Luxury automotive manufacturer

uses Flutter for vehicle

companion apps, integrating

complex hardware interactions

with elegant user interfaces.

Alibaba

E-commerce giant chose Flutter

for critical customer-facing

applications, demonstrating its

capability to handle high-traffic,

complex business logic.

eBay Motors

Specialised marketplace

application showcases Flutter's

ability to handle rich media

content and complex user

interactions in commercial

environments.
Key reasons for adoption: rapid MVP development, consistent UI across platforms, and significantly lower maintenance costs compared to

traditional native development approaches.

Activity 2 – Paper & Pen (5 minutes)

What primary advantage of Flutter do you believe best supports your

application-development objectives?

Introduction to Dart

Language Characteristics

Dart is a modern, object-oriented, strongly typed programming

language specifically designed for client-side development. Its

syntax and features make it particularly well-suited for building

Flutter applications.

Compilation Flexibility

• Native machine code for mobile platforms

• JavaScript compilation for web deployment

• JIT compilation for development

• AOT compilation for production

Learning Curve Advantage

Dart offers a smooth learning curve for developers familiar with

Java, C#, JavaScript, or other modern programming languages,

reducing the barrier to entry for Flutter development.

Key Design Goals

Optimised for fast development cycles, predictable performance, and

easy debugging—making it ideal for both rapid prototyping and

production applications.

Dart Type System & Null Safety

Sound Null Safety
Dart's sound null safety system represents a significant advancement in programming language design, preventing null reference errors at both

compile time and runtime.

Compile-Time Protection

The compiler catches potential null

reference errors before your code runs,

eliminating an entire class of runtime

crashes that plague many applications.

Runtime Safety

Even in edge cases that escape compile-

time analysis, Dart's runtime systems

provide additional protection against null

pointer exceptions.

Developer Benefits

Safer code leads to fewer production

bugs, easier maintenance, and increased

developer confidence when refactoring

or extending existing codebases.

Professional Impact: Null safety significantly reduces debugging time and production issues, making your applications more reliable

and your development process more efficient.

Asynchronous Programming in
Dart

The Problem

Network requests, file operations, and

database queries can take significant

time to complete. If these operations

run on the main thread, they block the

UI, creating poor user experiences

with frozen interfaces and

unresponsive controls.

Dart's Solution

async/await syntax and Futures

provide clean, readable non-blocking

code that maintains UI responsiveness

whilst handling time-consuming

operations elegantly.

Streams for
Continuous Data

Handle continuous event and data

flows like real-time user input, live

chat messages, or sensor data using

Dart's powerful Stream APIs.

Best Practices

• Use async/await for single

operations

• Use Streams for continuous data

• Always handle errors with try-

catch

• Avoid blocking the main thread

Dart Example with Async/Await

Future<void> main() async {
 final data = await fetchGreeting();
 for (var i = 1; i <= 3; i++) {
 print('$data #$i');
 }
}

Future<String> fetchGreeting() async {
 await Future.delayed(Duration(milliseconds: 300));
 return 'Hello Flutter';
}

This example demonstrates several key Dart concepts working together:

Asynchronous Functions

Functions marked with async can use await to

pause execution until futures complete, without
blocking other operations.

Awaiting Results

The await keyword pauses function execution

until the future resolves, then continues with the
result value.

Simple Loops

Standard control flow works naturally with
asynchronous code, making complex operations
easy to read and maintain.

Packages & pub.dev

Official Repository

pub.dev serves as the official package

repository for Dart and Flutter, hosting

thousands of well-maintained

packages that extend your application

capabilities significantly.

Essential Categories
• HTTP and networking

• JSON parsing and serialisation

• Firebase integration

• SQLite and database access

• State management solutions

• UI components and animations

Selection Best Practices

Choose reputable packages by

evaluating maintenance frequency,

community support, documentation

quality, and compatibility with your

Flutter version.

Evaluation Criteria
1. Recent updates and active

maintenance

2. Strong community ratings and

usage

3. Comprehensive documentation

4. Compatible license terms

5. Performance impact assessment

Quality packages can dramatically accelerate development whilst maintaining code

reliability. However, evaluate dependencies carefully to avoid technical debt and

security vulnerabilities.

http://pub.dev

Activity 3 – Paper & Pen (5 minutes)

"What is the single most important reason you would choose Flutter

for a project?"

Required Tools Overview
A proper development environment is crucial for productive Flutter development.

These tools work together to provide comprehensive development, testing, and

deployment capabilities.

Flutter SDK
Core toolkit and command-line interface providing compilation, hot reload,

testing frameworks, and deployment tools for all supported platforms.

Development IDEs

Android Studio (full-featured with excellent debugging) or Visual Studio

Code (lightweight with great extensions) both offer strong Flutter support.

Testing Devices

Android Emulator, iOS Simulator, or physical devices for comprehensive

testing across different screen sizes and operating system versions.

Version Control

Git recommended for team collaboration, code backup, and project history

management—essential for professional development workflows.

Installing Flutter SDK

Download Latest Release

Visit https://flutter.dev and download the latest stable release for your operating system.

Stable releases ensure compatibility and reliability.

Extract and Configure Path

Extract the SDK to a secure directory (avoid spaces in path names) and add the flutter/bin

directory to your system's PATH environment variable.

Verify Installation

Run flutter doctor to check all dependencies and system configuration. This

diagnostic tool identifies missing components and configuration issues.

Resolve Dependencies

Address any issues identified by flutter doctor before creating your first project. Common

requirements include Android SDK, Xcode (for iOS), and IDE plugins.

Important: Proper PATH configuration ensures Flutter commands work from any

directory. Test by opening a new terminal and running flutter --version.

https://flutter.dev

Configuring Android Studio

Essential Plugins

Install both Flutter and Dart plugins

from the Android Studio Marketplace.

These plugins provide syntax

highlighting, debugging support, hot

reload integration, and widget

inspection tools.

Android Emulator Setup
Configure an Android Virtual Device

(AVD) using a modern Pixel device

profile. Choose system images with

Google Play Services for

comprehensive testing capabilities.

SDK License Acceptance

Accept all Android SDK licenses by

running flutter doctor --

android-licenses in your

terminal. This step is required for

building and deploying Android

applications.

Performance Optimisation
• Enable hardware acceleration for

emulator

• Allocate sufficient RAM

(minimum 4GB)

• Enable Intel HAXM or AMD

hypervisor

• Close unnecessary applications

during development

Setting Up VS Code (Optional)

Lightweight Alternative

Visual Studio Code offers a

lightweight yet powerful alternative to

Android Studio, particularly suitable

for developers preferring minimal

resource usage or those with lower-

specification development machines.

Essential Extensions

• Flutter extension (official)

• Dart extension (official)

• Flutter Widget Snippets (helpful)

• Bracket Pair Colorizer

(readability)

Integrated Development

Use the integrated terminal for Flutter

commands, ensuring seamless

workflow between code editing and

command-line operations without

switching applications.

When to Choose VS Code

• Limited system resources

• Preference for customisable

interface

• Focus on code editing over visual

design

• Integration with existing VS Code

workflows

Verifying the Installation

flutter doctor
The flutter doctor command serves as your installation health check, providing comprehensive diagnosis of your development environment

and highlighting any configuration issues that need resolution.

Comprehensive System Check

Confirms Flutter and Dart versions,

detects connected devices, validates

IDE plugins, and verifies Android

SDK configuration in a single

command.

Issue Resolution

Address any warnings carefully—they

often indicate missing dependencies or

configuration problems that will cause

issues during development.

Common Installation Issues

Missing Android SDK components,

incorrect PATH variables, outdated

Java or Gradle versions, and missing

IDE plugins are typical problems with

clear solutions.

Pro Tip: Run flutter doctor regularly, especially after system updates or when encountering build issues. It often reveals the root

cause of development problems.

Activity 4 – Raise-Hand Discussion

"Can Flutter apps match the performance

of native apps? Why or why not?"

Creating the First Project

flutter create my_app
This single command creates a complete, runnable Flutter application with
organized folder structure, essential dependencies, and a functional counter app
that demonstrates core Flutter concepts.

Generated Project Structure
Creates comprehensive folder
hierarchy including source code
directories, platform-specific
configurations, testing frameworks,
and documentation templates.

Entry Point
lib/main.dart serves as your
application's entry point, containing
the initial widget tree and
demonstrating fundamental Flutter
development patterns.

Ready-to-Run Application
The generated counter app provides
a working example showcasing state
management, user interaction, and
UI updates—perfect for exploring
Flutter's reactive programming
model.

Project Structure Explained

Directory/File Purpose & Contents

lib/ Main Dart source code, including main.dart entry point and all application logic

pubspec.yaml Project configuration: dependencies, assets, fonts, and Flutter SDK version constraints

android/ & ios/ Platform-specific configurations, native code integration, and build settings

test/ Unit tests, widget tests, and integration tests ensuring code quality and reliability

web/ & windows/ Web and desktop platform configurations for multi-platform deployment

Professional Tip: Organise files by feature rather than by type for scalability. Create directories like

lib/features/auth/ instead of lib/widgets/ as your project grows.

Running the App & Hot Reload

01

Start Emulator or Connect Device

Launch your Android emulator, iOS

simulator, or connect a physical device via

USB with developer options enabled for

testing.

02

Launch Application

Run flutter run in your project directory

to compile and launch the default counter

application, which demonstrates basic Flutter

functionality.

03

Experience Hot Reload

Edit main.dart (try changing the app title or

primary color) and press 'r' in the terminal or

save your file to see changes instantly without

losing application state.

Hot Reload Benefits: This feature dramatically accelerates development by preserving application state whilst updating the UI, allowing rapid

iteration and immediate feedback during the development process.

Hot reload works for UI changes and most code modifications. For structural changes like adding new dependencies, use hot restart

('R') or stop and restart the application.

Common Setup Pitfalls

Slow Emulator Performance

Enable hardware acceleration in

BIOS settings, allocate more RAM

to the emulator, close memory-

intensive background applications,

and consider using a physical

device for better performance.

PATH Configuration Issues

Verify correct PATH setup with

echo $PATH (macOS/Linux) or

where flutter (Windows).

Restart terminal after making PATH

changes to ensure they take effect.

Version Conflicts

Stick to the stable Flutter channel unless specific beta features are required.

Use flutter channel stable and flutter upgrade to ensure

compatibility.

Prevention Strategy: Follow installation instructions precisely, run flutter

doctor frequently, and address warnings promptly rather than ignoring them.

Most setup issues have well-documented solutions in the Flutter documentation.

Conclusion

Cross-Platform Excellence

Flutter delivers fast, high-

performance cross-platform

development from a single

codebase, revolutionising traditional

mobile development approaches and

significantly reducing time-to-

market for applications.

Modern Language Benefits

Dart provides modern, safe, and

efficient programming features

including null safety, asynchronous

programming, and strong typing

that enhance code reliability and

developer productivity.

Foundation for Success

Correct environment setup is crucial for upcoming labs and projects. A

properly configured development environment enables smooth learning

progression and professional development practices.

These foundational concepts form the basis for everything we'll explore in

subsequent lectures. Understanding cross-platform development principles,

Flutter's architecture, and Dart's capabilities prepares you for hands-on

development work and professional software engineering practices.

Thank you…

Any questions??

حولالراجعةالتغذيةنموذجلتعبئةQR Codeالسريعةالاستجابةرمزمسحيرجى

.القادمةالمحاضراتلتحسينمهمةملاحظاتكم.المحاضرة

My google site

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

