Introduction to General Pathology

Lec 1

Pathology: is The study of structural and functional changes in cells, tissues, and organs that underlie disease.

Main aspects:

- Etiology (causes)
- Pathogenesis (mechanisms of disease development)
 - Morphologic changes (structural alterations)
 - Clinical significance (functional consequences)
- General Pathology focuses on basic mechanisms (e.g., cell injury, inflammation, necrosis) rather than organ-specific diseases.

The Cell as the Basis of Disease

The Cell = basic structural and functional unit of the body.

- Cellular responses to stress or injury:
- Adaptation → reversible if the stress is removed.
- 2. Reversible injury: temporary changes (e.g., cell swelling, fatty change) that return to normal if the cause is eliminated..
 - 3. Irreversible injury → Cell death:
 - Apoptosis (programmed cell death)
- Necrosis (uncontrolled cell death) ← topic of today.

NECROSIS VS APOPTOSIS

NECROSIS

"Necrosis is the morphological changes that follow cell death in a living tissue or organ

Resulting from the progressive degenerative action of enzymes on the lethally injured cell."

- Causes of necrosis:
- Anoxia
- Ischemia
- Physical agents
- Chemical agents
- Biological agents

Morphological changes in necrosis

Changes in necrosis

- ✓ Changes inside the cell
- ✓ Changes in mitochondria
- ✓ Changes in Nucleus
- ✓ Changes in cytoplasm

Changes inside the cell

- Endoplasmic reticulum is disorganized
- There is rupture of membrane
- Ribosomes are shed off
- Disorganization of polysomes & their structures

Changes in mittochondria

- Mitochondria become swallon
- Loss of interamitochondrial granules
- Loss of cristae & change their shape
- Rupture of outer membrane of Mitochondria

Changes in Nucleus

- Nucleus becomes smaller
- Chromatin loses & become clumped
- > Nucleus shows following changes
- Pyknosis
- Karyorrhexis
- Karyolysis

Nuclear shrinkage and increased basophilia; the DNA condense into a solid shrunken mass

KARYORRHEXIS

"The pyknotic nucleus may break up into fragments and disappear. This process is called karyorrhexis"

KARYOLYSIS

"Nucleus may undergo lysis by the enzyme DNAse"

Cytoplasm becomes more eosinophilic:

Due to loss of RNA & denaturation of cytoplasmic proteins

Cytoplasm becomes opaque.

TYPES OF NECROSIS Basic types

- Coagulative necrosis
- Liquefactive necrosis
- Caseous necrosis

In special sites

- Fat necrosis
- Fibrinoid necrosis
- Gangrenous necrosis

COAGULATIVE NECROSIS

"In this type of necrosis, the necrotic cell retains its cellular outline for several days"

• Coagulative necrosis typically occurs in solid organs except brain such as kidney, heart and adrenal gland usually as a result of deficient blood supply and anoxia.

Examples

Myocardial infarction

Coagulative Necrosis – Acute Myocardial Infarction

Source: TUSDM

Source: TUSDM

67

(c) 2007, Michael A. Kahn, DDS

Coagulative Necrosis - Kidney

Normal

Source: TUSDM

Necrosis

Source: TUSDM

2.1

(c) 2007, Michael A. Kahn, DDS

LIQUEFACTIVE NECROSIS

It is the type of necrosis that occurs due to autolytic and heterolytic actions of enzymes that convert the proteins of cells into liquid.

➤ It is characterized by softening and liquifaction of tissue.

Examples

- Ischemic necrosis of brain
- Suppurative inflammation.

Source: TUSDM

77

(c) 2007, Michael A. Kahn, DDS

Liquefactive necrosis in brain tissue

CASEOUS NECROSIS

- Characterized by the presence of soft, dry, cheesy homogenous necrotic material.
- It is not liquified

Examples

• Principaly in the center of tuberculous granuloma

Necrosis in special sites

FAT NECROSIS

It occurs in two forms:

Enzymatic fat necrosis

Traumatic fat necrosis

FIBRINOID NECROSIS

- Type of connective tissue necrosis especially affecting arterial walls.
- Mostly seen in two conditions
- Auto immune diseases e.g
 Rheumaic fever
- Malignant hypertension

Fibrinoid Necrosis - Artery

Source: TUSDM

92

(c) 2007, Michael A. Kahn, DDS

GANGRENOUS NECROSIS

- Gangrene is the necrosis of tissue with superadded putrefaction (enzymatic decomposition).
- Gangree= Necrosis + infection + putrefaction

Types of gangrene

Dry gangrene

Wet gangrene

Gas gangrene

Dry gangrene of foot

Normal bowel

Intussusception

Wet gangrene of appendix

Apoptosis vs Necrosis Apoptosis vs Necrosis

The word apoptosis mean falling off.

"Apoptosis is a process of programmed and targeted cause of cellular death"

Apoptosis is differ from Necrosis:

APOPTOSIS IS USED TO GET RID OF CELLS THAT ARE POTENTIALLY HARMFUL

PHYSIOLOGICAL CELL DEATH

- The body needs to get rid of cells that are potentially harmful
 - eg mutant cells that could become cancerous self destruct by apoptosis
 - (works via p53; "the guardian of the genome")
- Auto-reactive lymphocytes die by apoptosis

APOPTOSIS IS OFTEN A DEFENCE AGAINST A THREAT TO THE BODY

APOPTOSIS INVOLVES AN ORDERLY INTRACELLULAR PATHWAY

In other words,

apoptosis is not an accident, but rather a complex genetic program for regulation of cell destruction

Norphological changes

in apoptosis

- Cell shrinkage
- Nuclear condensation
- Cytoplasmic blebs-Apoptotic bodies
- Phagocytosis

Causes of apoptosis

- Embryogenesis and developmental involution
- Hormone withdrawal
- Ovarian atresia-menopause
- ❖ Immature cells-Bone marrow and thymus
- **❖** WBC-End of inflammatory response

Causes of Apoptosis

- Pathologic causes of apoptosis
- DNA damage-Cytotoxic drugs, radiation and hypoxia
- Accumulation of misfolded proteins
- ❖ Infections: mainly viral by inducing Tcell response

MORPHOLOGY OF AP'OPTOSIS

Physiological or pathological	Always pathological
Cell shrinkage	Cell swelling
Apoptotic bodies form	Do not form
DNA cleavage	No DNAcleavage
Beneficial	Detrimental
Characteristic nuclear changes	Nuclei lost
No leak of lysosomal enzyme	Leak of lysosomal enzymes

