Network Architecture

A set of layers and protocols is called the network architecture.

Protocol Hierarchies

- Networks are organized as layers to *reduce design complexity*.
- Each layer **offers services** to the **higher** layers. Between adjacent layers is an **interface**. The basic elements of a layered model are:

Services	Interface	Primitives
Connection oriented	Defines which primitives and	Operations such as request,
and connectionless.	services the lower layer will offer to the upper layer.	indicate, response, confirm.

Design Issues for the Layers (functions)

- 1. Mechanism for connection establishment
- 2. Rules for data transfer
- **3.** Error control
- 4. Fast sender swamping a slow receiver
- 5. Routing in the case of multiple paths

Network Protocols

• <u>Protocol</u>: is a format order of messages sent and received among the network entities and action taken on messages transmission receipt.

• <u>Protocol process</u>:

- 1. The **format** or structure of the message
- 2. The **process** by which networking devices share information about **pathways** with other networks
- 3. How and when error and system messages are passed between devices
- 4. The setup and termination of data transfer sessions

Layering in Networked Computing

- OSI Model (open system interconnection)
- TCP/IP Model

Why a layered model?

- 1. Breaks down communication into smaller, simpler parts.
- 2. Easier to teach communication process.
- 3. Allows different hardware and software to work together.
- 4. **Reduces** complexity

The OSI model

The Open Systems Interconnection is the model developed by the International Standards Organization. The OSI model benefits are:

- Helps us understand *how data gets from one user's* computer to another.
- It aids to provide an organized structure for hardware and software developers to follow.

Why use a reference model?

- Serves as an outline of rules for how protocols can be used to allow communication between computers.
- Each layer has its **own function and provides support to other layers.**

Layer	Name	Example protocols
7	Application Layer	HTTP, FTP, DNS, SNMP, Telnet
6	Presentation Layer	SSL, TLS
5	Session Layer	NetBIOS, PPTP
4	Transport Layer	TCP, UDP
3	Network Layer	IP, ARP, ICMP, IPSec
2	Data Link Layer	PPP, ATM, Ethernet
1	Physical Layer	Ethernet, USB, Bluetooth, IEEE802.11

Benefits(Advantage)	Negative Aspect (disadvantage)	
Interconnection of different systems (open)Not limited to a single vendor solution	 Systems might be less secure Systems might be less stable 	

Layer	Main Topics		
	• Transmission mediums (transmit bits over medium)		
	Encoding		
Physical Layer	Modulation		
	• Repeaters		
	• Hubs (multi-port repeater)		
	• To provide mechanical and electrical specification		
	Error detection and correction methods		
Data Link Layer	• Hop to hop delivery		
	• Flow control		
	• Frame format		
	IEEE LAN standards		
	Bridges & Switches (multi-port bridges)		
	 physical addressing(MAC Address) 		
	• Internetworking		
Network Laver	• Controls the operation of the subnet.		
	 Routing algorithms(Routing packets from source to destination) 		
	• Internet Protocol (IP) addressing (Logical addressing)		
	• Routers		
	Connection-oriented and connectionless services		
Transport Layer	Provide reliable process to process message delivery & error		
	recovery		
	Transmission Control Protocol (TCP)		
	• User Datagram Protocol (UDP)		
	 Provides additional Quality of Service. 		
	Port address		
	• End-to-end flow control.		
	• Allows users on different machines to establish sessions		
Session Layer	(dialogue) between them.		
	• managing dialogue control.		
	• Token management.		
Dresentation Lawar	• Synchronization.		
Presentation Layer	 Concerned with the syntax and semantics of the information. Preserves the meaning of the information 		
	 Data compression 		
	 Data compression. Data encryption 		
Annlication Laver	 Provides protocols that are commonly needed 		
PPriceton Dayor	 To allow access to network resource 		
	• (FTP), (HTTP), (SMTP), (SNMP),(NFS).(Telnet)		

SERVICES

Connection-Oriented	Connectionless
Before data is sent, the service from the sending computer must establish a connection with the receiving computer.	Data can be sent at any time by the service from the sending computer.

Data Encapsulation

Each layer contains a Protocol Data Unit (PDU)

- 1. PDU's are used for **peer-to-peer** contact between corresponding layers.
- 2. Data is handled by the top three layers, then Segmented by the Transport layer.
- **3.** The **Network layer places segment into packets** and the **Data Link frames the packets** for transmission.
- 4. Physical layer converts frame to bits and sends it out over the media.
- **5.** The **receiving computer reverses the process** using the information contained in the PDU (headers of each layer).

The Layer	Shape of data (PDU)
top three layers	Data
Transport layer	Segment
Network layer	packets
Data Link layer	frames
Physical layer	bits

Host A		Host B
Application	<- →	Application
Presentation	- Data	Presentation
Session	~ ,	Session
Transport	Segments	Transport
Network	Packets	Network
Data Link	Frames	Data Link
Physical	Bits	Physical

<u>4 Layers of the TCP/IP Model</u>

- Layer 4: Application
- Layer 3: Transport
- Layer 2: Internet
- Layer 1: Network access

It is important to note that some of the layers in the TCP/IP model have the same name as layers in the OSI model. Do not confuse the layers of the two models.

Data Encapsulation In TCP/IP

- Outgoing data is packaged and identified for **delivery** to the layer underneath
- PDU Packet Data Unit the "envelop" information attached to a packet at a particular TCP/IP protocol e.g. header and trailer
- Header (Identifies the protocol in use, the sender and intended recipient)
- Trailer (or packet trailer) (Provides data integrity checks for the payload)

Data Formats

Encapsulation (TCP/IP)

Encapsulation example: E-mail

E-mail	message			
	Data	Data		
	Data	Segment		
Network Header	Data	Packet		
Frame Network Header Header	Data Frame Trailer	Frame (medium dependent)		
011010001101110100011010111010010				

TCP/IP protocol stack

TCP/IP Reference Model

Layer	Protocols	
Application	HTTP TELNET FTP SMTP SNMP	
Transport	TCP UDP	
Internet	IP ICMP	
Network Access (Host-to-network)	ETHERNET PACKET RADIO	

What is a socket?

- An interface between application and network(each application create socket)
- Socket(Protocol family, type-of-communication, specific- protocol);

- The socket *type* dictates the style of communication
 - ✤ reliable vs. best effort
 - connection-oriented vs. connectionless

Q /Explain the delivery of data in Layered model?

Type of delivery	Layer	Shape of	Type of addressing
		data	
End to End	Transport	Segment	Port (socket)
Source To Destination	Network	Packet	Logical (IP)
Node to Node	Data Link	Frame	Physical(MAC)

SI Model

TCP/IP Model

7.	Application)		Domain Name System
6.	Presentation	Application Layers	Application	Hypertext
5.	Session)		Transfer Protocol
4.	Transport)	Transport	Simple Mail Transfer Protocol
3.	Network	Data Flow	Internet	Post Office Protocol
2.	Data Link	Layers	Network	Dvnamic Host
1.	Physical)	Access	Configuration Protocol

OSI (Open System Interconnection)	TCP/IP (Transmission Control Protocol / Internet Protocol)
1. OSI provides layer functioning and also defines functions of all the layers.	1. TCP/IP model is more based on protocols and protocols are not flexible with other layers.
2. OSI model has a separate presentation layer	2. TCP/IP does not have a separate presentation layer
3. OSI is a general model.	3. TCP/IP model cannot be used in any other application.
4. Network layer of OSI model provide both connection oriented and connectionless service.	4. The Network layer in TCP/IP model provides connectionless service.
5. OSI model has a problem of fitting the protocols in the model	5. TCP/IP model does not fit any protocol
6. Protocols are hidden in OSI model and are easily replaced as the technology changes.	6. In TCP/IP replacing protocol is not easy.
7. OSI model defines services, interfaces and protocols very clearly and makes clear distinction between them.	7. In TCP/IP it is not clearly separated its services, interfaces and protocols.
8. It has 7 layers	8. It has 4 layers