

Seminal Fluid Analysis

Lec.4

Dr. Zahraa Tariq Hasson

● **Introduction**

● Semen analysis is the primary laboratory tool (**in addition to Hormonal profile**) for evaluating the male reproductive function. It reflects the integrity of:

1. Testicular spermatogenesis
2. Epididymal maturation
3. Accessory gland secretions
4. Patency of the reproductive ducts

● Seminal fluid interpretation should include:

1. **Sperm concentration (count)**
2. **Motility**
3. **Morphology**
4. **Additional parameters** (volume, Sperm viability, pH, liquefaction, WBCs)

● **Semen Collection & Processing:**

- Correct collection and handling of the semen sample are critical to ensure accurate and reliable results:
 - 1. Abstinence period:** The patient should maintain at least 3 days of sexual abstinence.
 - 2. Sample collection:** The semen must be obtained by masturbation directly into a clean, sterile container, avoiding loss of any portion of the ejaculate.
 - 3. Liquefaction:** After ejaculation, the sample is allowed to liquefy within 60 minutes at room temperature.
 - 4. Temperature for Semen Analysis:** All motility assessments should be performed at 37°C to preserve physiological sperm movement

1. Sperm Count (Concentration)

- Sperm concentration refers to the number of spermatozoa present in each milliliter of semen.
- A normal value is ≥ 20 million/mL, indicates adequate spermatogenic activity.
- The epididymis plays a key role in concentrating and maturing the sperm.

2. Sperm Motility Types

- Progressive motility (PR): Forward, linear movement (fast or slow).
- Non-progressive motility (NP): Movement without forward progression.
- Immotile (IM): No movement.
- **Normal Values**
- Total motility (PR + NP): $\geq 40\%$
- Progressive motility (PR): $\geq 32\%$ Motility

⦿ Common Causes

1. Varicocele,
2. Genital tract infections,
3. Smoking
4. Hormonal disturbances (Poorly matured sperm)

3. Sperm Morphology

- **Normal morphology:** $\geq 4\%$ normal forms

The normal sperm cell shows an **oval head**, a well-formed **acrosome (40–70%)**, a **normal midpiece**, and a **straight, uncoiled tail**.

- Morphology mainly reflects the quality of **spermiogenesis**, including proper **Sertoli cell support**, **acrosomal formation**, and **chromatin/DNA packaging** during final maturation.

4. Additional Parameters

● Semen Volume

- Normal volume per ejaculate is 1.5 – 5 mL after several days of abstinence from sexual activity. The volume of semen and the sperm count decrease rapidly with repeated ejaculation.
- Low volume → ejaculatory duct obstruction or low accessory gland secretions

● pH

- Normal: ≥ 7.2
- Low \rightarrow seminal vesicle obstruction
- High \rightarrow infection

● Sperm viability

- Normal: $\geq 54\%$ live sperm

● WBC Count

- Normal: < 1 million/mL
- High \rightarrow infection

How to Interpret a Normal Report

Parameter	WHO Normal Value	Interpretation
Sperm count	≥ 20 million/mL	Adequate spermatogenesis
Total motility	$\geq 40\%$	Good motile population
Progressive motility	$\geq 32\%$	Effective forward movement
Morphology	$\geq 4\%$	Normal spermiogenesis
Volume	≥ 1.5 mL	Normal accessory gland function
Sperm Viability	$\geq 54\%$	Normal viability
pH	≥ 7.2	Normal seminal vesicle and prostate secretion

- **Interpretation of a Normal Report**
- Normal motility and morphology indicate proper epididymal maturation.
- Testicular function is sufficient to support normal spermatogenesis.
- Seminal vesicles and prostate are functioning appropriately, as reflected by normal ejaculate volume and pH.
- White blood cell count is within normal limits, suggesting absence of infection
- **Clinical Notes:**
 - One normal semen sample does not guarantee fertility—WHO recommends two samples at least 2–3 weeks apart.
 - Semen analysis must be interpreted with clinical history and hormonal profile if needed (FSH, LH, testosterone, prolactin).

Male infertility factors:

- The term infertility is defined as the failure to conceive after one year of frequent unprotected intercourse.
- Male infertility factor may involved of:
 1. Aspermia
 2. Azoospermia,
 3. Oligozoospermia,
 4. Asthenozoospermia,
 5. Necrozoospermia,
 6. Teratozoospermia,
 7. Leucocytospermia
- additional to that of immunological factor.

- **Aspermia:**
- A case combined with patient can produce completed ejaculation process but without evidence of containing semen. like retrograde ejaculation (post surgery or drugs).
- **Azoospermia:** is the term used when there is a complete absence of sperms in ejaculate (semen), even after centrifugation. It may result from primary testicular failure.
- **Oligozoospermia:**
 - Means decrease the concentration of spermatozoa in the seminal fluid.

- **Asthenozoospermia**
- Is a common cause of male infertility, occurring alone in about 24% of cases and combined with reduced sperm count or abnormal morphology in an additional ~55%.
- It is clinically important because only motile sperm are capable of progressing through the female reproductive tract to reach and fertilize the oocyte.
- Asthenozoospermia is diagnosed when < 50% of sperm show forward or total motility within 1 hour after ejaculation, indicating impaired sperm movement (Why?)

● **Necrozoospermia:**

- A condition in which spermatozoa are completely immotile because they are non-viable, despite normal count and morphology. It commonly results from microstructural sperm defects or epididymal dysfunction causing premature sperm death.

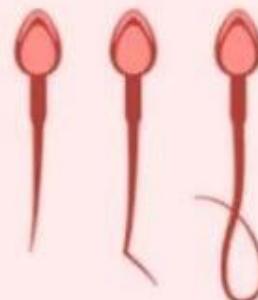
- ❖ **Teratozoospermia:** Teratozoospermia: < 4% normal forms associated with reduced fertility and a higher likelihood of DNA fragmentation due to defective spermiogenesis was regarded as important abnormal infertility factor which are classified according to WHO as follows:

- A. Head shape/size defects.
- B. Neck and midpiece defects.
- C. Tail defects

What is Teratozoospermia?

Normal

Head defects


Acrosomeless

Midpiece defects

Tail defects

