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Biopharmaceutics

All pharmaceuticals, from the generic analgesic tablet in the community pharmacy to the state-of-the-art
immunotherapy in specialized hospitals, undergo extensive research and development prior to approval by
the U.S. Food and Drug Administration (FDA). The physicochemical characteristics of the active
pharmaceutical ingredient (API, or drug substance), the dosage form or the drug, and the route of
administration are critical determinants of the in-vivo performance, safety and efficacy of the drug product.
The properties of the drug and its dosage form are carefully engineered and tested to produce a stable drug
product that upon administration provides the desired therapeutic response in the patient. Both the
pharmacist and the pharmaceutical scientist must understand these complex relationships to comprehend
the proper use and development of pharmaceuticals.

To illustrate the importance of the drug substance and the drug formulation on absorption, and distribution
of the drug to the site of action, one must first consider the sequence of events that precede elicitation of a
drug's therapeutic effect. First, the drug in its dosage form is taken by the patient either by an oral,
intravenous, subcutaneous, transdermal, etc., route of administration. Next, the drug is released from the
dosage form in a predictable and characterizable manner. Then, some fraction of the drug is absorbed from
the site of administration into either the surrounding tissue, into the body (as with oral dosage forms), or
both. Finally, the drug reaches the site of action. If the drug concentration at the site of action exceeds the
minimum effective concentration (MEC), a pharmacologic response results. The actual dosing regimen
(dose, dosage form, dosing interval) was carefully determined in clinical trials to provide the correct drug
concentrations at the site of action. This sequence of events is profoundly affected—in fact, sometimes
orchestrated—by the design of the dosage form, the drug itself, or both.

Historically, pharmaceutical scientists have evaluated the relative drug availability to the body in vivo after
giving a drug product to an animal or human, and then comparing specific pharmacologic, clinical, or
possible toxic responses. For example, a drug such as isoproterenol causes an increase in heart rate when
given intravenously but has no observable effect on the heart when given orally at the same dose level. In
addition, the bioavailability (a measure of systemic availability of a drug) may differ from one drug
product to another containing the same drug, even for the same route of administration. This difference in
drug bioavailability may be manifested by observing the difference in the therapeutic effectiveness of the
drug products. In other words, the nature of the drug molecule, the route of delivery, and the formulation of
the dosage form can determine whether an administered drug is therapeutically effective, toxic, or has no
apparent effect at all.

Biopharmaceutics is the science that examines this interrelationship of the physicochemical properties of
the drug, the dosage form in which the drug is given, and the route of administration on the rate and extent
of systemic drug absorption. Thus, biopharmaceutics involves factors that influence (1) the stability of the
drug within the drug product, (2) the release of the drug from the drug product, (3) the rate of
dissolution/release of the drug at the absorption site, and (4) the systemic absorption of the drug. A general
scheme describing this dynamic relationship is described in .
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Figure 1-1.

Scheme demonstrating the dynamic relationship between the drug, the drug product, and the
pharmacologic effect.

The study of biopharmaceutics is based on fundamental scientific principles and experimental
methodology. Studies in biopharmaceutics use both in-vitro and in-vivo methods. In-vitro methods are
procedures employing test apparatus and equipment without involving laboratory animals or humans. In-
vivo methods are more complex studies involving human subjects or laboratory animals. Some of these
methods will be discussed in . These methods must be able to assess the impact of the physical and
chemical properties of the drug, drug stability, and large-scale production of the drug and drug product on
the biologic performance of the drug. Moreover, biopharmaceutics considers the properties of the drug and
dosage form in a physiologic environment, the drug's intended therapeutic use, and the route of
administration.

Pharmacokinetics

After a drug is released from its dosage form, the drug is absorbed into the surrounding tissue, the body, or
both. The distribution through and elimination of the drug in the body varies for each patient but can be
characterized using mathematical models and statistics. Pharmacokinetics is the science of the kinetics of
drug absorption, distribution, and elimination (ie, excretion and metabolism). The description of drug
distribution and elimination is often termed drug disposition. Characterization of drug disposition is an
important prerequisite for determination or modification of dosing regimens for individuals and groups of
patients.

The study of pharmacokinetics involves both experimental and theoretical approaches. The experimental
aspect of pharmacokinetics involves the development of biologic sampling techniques, analytical methods
for the measurement of drugs and metabolites, and procedures that facilitate data collection and
manipulation. The theoretical aspect of pharmacokinetics involves the development of pharmacokinetic
models that predict drug disposition after drug administration. The application of statistics is an integral
part of pharmacokinetic studies. Statistical methods are used for pharmacokinetic parameter estimation and
data interpretation ultimately for the purpose of designing and predicting optimal dosing regimens for
individuals or groups of patients. Statistical methods are applied to pharmacokinetic models to determine
data error and structural model deviations. Mathematics and computer techniques form the theoretical basis
of many pharmacokinetic methods. Classical pharmacokinetics is a study of theoretical models focusing
mostly on model development and parameterization.

Clinical Pharmacokinetics

During the drug development process, large numbers of patients are tested to determine optimum dosing
regimens, which are then recommended by the manufacturer to produce the desired pharmacologic
response in the majority of the anticipated patient population. However, intra- and interindividual
variations will frequently result in either a subtherapeutic (drug concentration below the MEC) or toxic
response (drug concentrations above the minimum toxic concentration, MTC), which may then require
adjustment to the dosing regimen. Clinical pharmacokinetics is the application of pharmacokinetic
methods to drug therapy. Clinical pharmacokinetics involves a multidisciplinary approach to individually
optimized dosing strategies based on the patient's disease state and patient-specific considerations.

The study of clinical pharmacokinetics of drugs in disease states requires input from medical and
pharmaceutical research. is a list of 10 age-adjusted rates of death from 10 leading causes of death in the
United States, 2003. The influence of many diseases on drug disposition is not adequately studied. Age,
gender, genetic, and ethnic differences can also result in pharmacokinetic differences that may affect the
outcome of drug therapy. The study of pharmacokinetic differences of drugs in various population groups



is termed population pharmacokinetics ().

Table 1.1 Ratio of Age-Adjusted Death Rates, by Male/Female Ratio from the 10 Leading Causes of
Death in the USA, 2003

Disease Rank Male:Female
Disease of heart 1 1.5
Malignant neoplasms 2 1.5
Cerebrovascular diseases 3 4.0

Chronic lower respiration diseases 4 1.4

Accidents and others* 5 2.2

Diabetes mellitus 6 1.2
Pneumonia and influenza 7 1.4
Alzheimers 8 0.8
Nephrotis, nephrotic syndrome and nephrosis 9 1.5
Septicemia 10 1.2

*Death due to adverse effects suffered as defined by CDC.
Source: National Vital Statistics Report Vol 52, No. 3, 2003

Pharmacokinetics is also applied to therapeutic drug monitoring (TDM) for very potent drugs such as
those with a narrow therapeutic range, in order to optimize efficacy and to prevent any adverse toxicity.
For these drugs, it is necessary to monitor the patient, either by monitoring plasma drug concentrations (eg,
theophylline) or by monitoring a specific pharmacodynamic endpoint such as prothrombin clotting time
(eg, warfarin). Pharmacokinetic and drug analysis services necessary for safe drug monitoring are
generally provided by the clinical pharmacokinetic service (CPKS). Some drugs frequently monitored are
the aminoglycosides and anticonvulsants. Other drugs closely monitored are those used in cancer
chemotherapy, in order to minimize adverse side effects ().

Pharmacodynamics

Pharmacodynamics refers to the relationship between the drug concentration at the site of action (receptor)
and pharmacologic response, including biochemical and physiologic effects that influence the interaction
of drug with the receptor. The interaction of a drug molecule with a receptor causes the initiation of a
sequence of molecular events resulting in a pharmacologic or toxic response. Pharmacokinetic-
pharmacodynamic models are constructed to relate plasma drug level to drug concentration in the site of
action and establish the intensity and time course of the drug. Pharmacodynamics and pharmacokinetic-
pharmacodynamic models are discussed more fully in .

Toxicokinetics and Clinical Toxicology

Toxicokinetics is the application of pharmacokinetic principles to the design, conduct, and interpretation of
drug safety evaluation studies () and in validating dose-related exposure in animals. Toxicokinetic data
aids in the interpretation of toxicologic findings in animals and extrapolation of the resulting data to
humans. Toxicokinetic studies are performed in animals during preclinical drug development and may
continue after the drug has been tested in clinical trials.

Clinical toxicology is the study of adverse effects of drugs and toxic substances (poisons) in the body. The
pharmacokinetics of a drug in an overmedicated (intoxicated) patient may be very different from the
pharmacokinetics of the same drug given in lower therapeutic doses. At very high doses, the drug



concentration in the body may saturate enzymes involved in the absorption, biotransformation, or active
renal secretion mechanisms, thereby changing the pharmacokinetics from linear to nonlinear
pharmacokinetics. Nonlinear pharmacokinetics is discussed in . Drugs frequently involved in toxicity cases
include acetaminophen, salicylates, morphine, and the tricylic antidepressants (TCAs). Many of these
drugs can be assayed conveniently by fluorescence immunoassay (FIA) kits.

Measurement of Drug Concentrations

Because drug concentrations are an important element in determining individual or population
pharmacokinetics, drug concentrations are measured in biologic samples, such as milk, saliva, plasma, and
urine. Sensitive, accurate, and precise analytical methods are available for the direct measurement of drugs
in biologic matrices. Such measurements are generally validated so that accurate information is generated
for pharmacokinetic and clinical monitoring. In general, chromatographic methods are most frequently
employed for drug concentration measurement, because chromatography separates the drug from other
related materials that may cause assay interference.

Sampling of Biologic Specimens

Only a few biologic specimens may be obtained safely from the patient to gain information as to the drug
concentration in the body. Invasive methods include sampling blood, spinal fluid, synovial fluid, tissue
biopsy, or any biologic material that requires parenteral or surgical intervention in the patient. In contrast,
noninvasive methods include sampling of urine, saliva, feces, expired air, or any biologic material that can
be obtained without parenteral or surgical intervention. The measurement of drug and metabolite
concentration in each of these biologic materials yields important information, such as the amount of drug
retained in, or transported into, that region of the tissue or fluid, the likely pharmacologic or toxicologic
outcome of drug dosing, and drug metabolite formation or transport.

Drug Concentrations in Blood, Plasma, or Serum

Measurement of drug concentration (levels) in the blood, serum, or plasma is the most direct approach to
assessing the pharmacokinetics of the drug in the body. Whole blood contains cellular elements including
red blood cells, white blood cells, platelets, and various other proteins, such as albumin and globulins. In
general, serum or plasma is most commonly used for drug measurement. To obtain serum, whole blood is
allowed to clot and the serum is collected from the supernatant after centrifugation. Plasma is obtained
from the supernatant of centrifuged whole blood to which an anticoagulant, such as heparin, has been
added. Therefore, the protein content of serum and plasma is not the same. Plasma perfuses all the tissues
of the body, including the cellular elements in the blood. Assuming that a drug in the plasma is in dynamic
equilibrium with the tissues, then changes in the drug concentration in plasma will reflect changes in tissue
drug concentrations.

Plasma Level-Time Curve

The plasma level-time curve is generated by obtaining the drug concentration in plasma samples taken at
various time intervals after a drug product is administered. The concentration of drug in each plasma
sample is plotted on rectangular-coordinate graph paper against the corresponding time at which the
plasma sample was removed. As the drug reaches the general (systemic) circulation, plasma drug
concentrations will rise up to a maximum. Usually, absorption of a drug is more rapid than elimination. As
the drug is being absorbed into the systemic circulation, the drug is distributed to all the tissues in the body
and is also simultaneously being eliminated. Elimination of a drug can proceed by excretion,
biotransformation, or a combination of both.

The relationship of the drug level-time curve and various pharmacologic parameters for the drug is shown
in . MEC and MTC represent the minimum effective concentration and minimum toxic concentration of
drug, respectively. For some drugs, such as those acting on the autonomic nervous system, it is useful to
know the concentration of drug that will just barely produce a pharmacologic effect (ie, MEC). Assuming



the drug concentration in the plasma is in equilibrium with the tissues, the MEC reflects the minimum
concentration of drug needed at the receptors to produce the desired pharmacologic effect. Similarly, the
MTC represents the drug concentration needed to just barely produce a toxic effect. The onset time
corresponds to the time required for the drug to reach the MEC. The intensity of the pharmacologic effect
is proportional to the number of drug receptors occupied, which is reflected in the observation that higher
plasma drug concentrations produce a greater pharmacologic response, up to a maximum. The duration of
drug action is the difference between the onset time and the time for the drug to decline back to the MEC.

Figure 1-2.

Generalized plasma level-time curve after oral administration of a drug.

In contrast, the pharmacokineticist can also describe the plasma level-time curve in terms of such
pharmacokinetic terms as peak plasma level, time for peak plasma level, and area under the curve, or AUC
(). The time of peak plasma level is the time of maximum drug concentration in the plasma and is a rough
marker of average rate of drug absorption. The peak plasma level or maximum drug concentration is
related to the dose, the rate constant for absorption, and the elimination constant of the drug. The AUC is
related to the amount of drug absorbed systemically. These and other pharmacokinetic parameters are
discussed in succeeding chapters.

Figure 1-3.

Plasma level-time curve showing peak time and concentration. The shaded portion represents the AUC
(area under the curve).

Drug Concentrations in Tissues

Tissue biopsies are occasionally removed for diagnostic purposes, such as the verification of a malignancy.
Usually, only a small sample of tissue is removed, making drug concentration measurement difficult. Drug
concentrations in tissue biopsies may not reflect drug concentration in other tissues nor the drug
concentration in all parts of the tissue from which the biopsy material was removed. For example, if the
tissue biopsy was for the diagnosis of a tumor within the tissue, the blood flow to the tumor cells may not
be the same as the blood flow to other cells in this tissue. In fact, for many tissues, blood flow to one part
of the tissues need not be the same as the blood flow to another part of the same tissue. The measurement
of the drug concentration in tissue biopsy material may be used to ascertain if the drug reached the tissues
and reached the proper concentration within the tissue.

Drug Concentrations in Urine and Feces

Measurement of drug in urine is an indirect method to ascertain the bioavailability of a drug. The rate and
extent of drug excreted in the urine reflects the rate and extent of systemic drug absorption. The use of
urinary drug excretion measurements to establish various pharmacokinetic parameters is discussed in .

Measurement of drug in feces may reflect drug that has not been absorbed after an oral dose or may reflect
drug that has been expelled by biliary secretion after systemic absorption. Fecal drug excretion is often
performed in mass balance studies, in which the investigator attempts to account for the entire dose given
to the patient. For a mass balance study, both urine and feces are collected and their drug content



measured. For certain solid oral dosage forms that do not dissolve in the gastrointestinal tract but slowly
leach out drug, fecal collection is performed to recover the dosage form. The undissolved dosage form is
then assayed for residual drug.

Drug Concentrations in Saliva

Saliva drug concentrations have been reviewed for many drugs for therapeutic drug monitoring (). Because
only free drug diffuses into the saliva, saliva drug levels tend to approximate free drug rather than total
plasma drug concentration. The saliva/plasma drug concentration ratio is less than 1 for many drugs. The
saliva/plasma drug concentration ratio is mostly influenced by the pKa of the drug and the pH of the saliva.
Weak acid drugs and weak base drugs with pKa significantly different than pH 7.4 (plasma pH) generally
have better correlation to plasma drug levels. The saliva drug concentrations taken after equilibrium with
the plasma drug concentration generally provide more stable indication of drug levels in the body. The use
of salivary drug concentrations as a therapeutic indicator should be used with caution and preferably as a
secondary indicator.

Forensic Drug Measurements

Forensic science is the application of science to personal injury, murder, and other legal proceedings. Drug
measurements in tissues obtained at autopsy or in other bodily fluids such as saliva, urine, and blood may
be useful if a suspect or victim has taken an overdose of a legal medication, has been poisoned, or has been
using drugs of abuse such as opiates (eg, heroin), cocaine, or marijuana. The appearance of social drugs in
blood, urine, and saliva drug analysis shows short-term drug abuse. These drugs may be eliminated
rapidly, making it more difficult to prove that the subject has been using drugs of abuse. The analysis for
drugs of abuse in hair samples by very sensitive assay methods, such as gas chromatography coupled with
mass spectrometry, provides information regarding past drug exposure. A study by showed that the hair
samples from subjects who were known drug abusers contained cocaine and 6-acetylmorphine, a
metabolite of heroine (diacetylmorphine).

Significance of Measuring Plasma Drug Concentrations

The intensity of the pharmacologic or toxic effect of a drug is often related to the concentration of the drug
at the receptor site, usually located in the tissue cells. Because most of the tissue cells are richly perfused
with tissue fluids or plasma, measuring the plasma drug level is a responsive method of monitoring the
course of therapy.

Clinically, individual variations in the pharmacokinetics of drugs are quite common. Monitoring the
concentration of drugs in the blood or plasma ascertains that the calculated dose actually delivers the
plasma level required for therapeutic effect. With some drugs, receptor expression and/or sensitivity in
individuals varies, so monitoring of plasma levels is needed to distinguish the patient who is receiving too
much of a drug from the patient who is supersensitive to the drug. Moreover, the patient's physiologic
functions may be affected by disease, nutrition, environment, concurrent drug therapy, and other factors.
Pharmacokinetic models allow more accurate interpretation of the relationship between plasma drug levels
and pharmacologic response.

In the absence of pharmacokinetic information, plasma drug levels are relatively useless for dosage
adjustment. For example, suppose a single blood sample from a patient was assayed and found to contain
10 mg/mL. According to the literature, the maximum safe concentration of this drug is 15 mg/mL. In order
to apply this information properly, it is important to know when the blood sample was drawn, what dose of
the drug was given, and the route of administration. If the proper information is available, the use of
pharmacokinetic equations and models may describe the blood level-time curve accurately.

Monitoring of plasma drug concentrations allows for the adjustment of the drug dosage in order to
individualize and optimize therapeutic drug regimens. In the presence of alteration in physiologic functions



due to disease, monitoring plasma drug concentrations may provide a guide to the progress of the disease
state and enable the investigator to modify the drug dosage accordingly. Clinically, sound medical
judgment and observation are most important. Therapeutic decisions should not be based solely on plasma
drug concentrations.

In many cases, the pharmacodynamic response to the drug may be more important to measure than just the
plasma drug concentration. For example, the electrophysiology of the heart, including an
electrocardiogram (ECG), is important to assess in patients medicated with cardiotonic drugs such as
digoxin. For an anticoagulant drug, such as dicumarol, prothrombin clotting time may indicate whether
proper dosage was achieved. Most diabetic patients taking insulin will monitor their own blood or urine
glucose levels.

For drugs that act irreversibly at the receptor site, plasma drug concentrations may not accurately predict
pharmacodynamic response. Drugs used in cancer chemotherapy often interfere with nucleic acid or
protein biosynthesis to destroy tumor cells. For these drugs, the plasma drug concentration does not relate
directly to the pharmacodynamic response. In this case, other pathophysiologic parameters and side effects
are monitored in the patient to prevent adverse toxicity.

Basic Pharmacokinetics and Pharmacokinetic Models

Drugs are in a dynamic state within the body as they move between tissues and fluids, bind with plasma or
cellular components, or are metabolized. The biologic nature of drug distribution and disposition is
complex, and drug events often happen simultaneously. Yet such factors must be considered when
designing drug therapy regimens. The inherent and infinite complexity of these events require the use of
mathematical models and statistics to estimate drug dosing and to predict the time course of drug efficacy
for a given dose.

A model is a hypothesis using mathematical terms to describe quantitative relationships concisely. The
predictive capability of a model lies in the proper selection and development of mathematical function(s)
that parameterize the essential factors governing the kinetic process. The key parameters in a process are
commonly estimated by fitting the model to the experimental data, known as variables. A pharmacokinetic
parameter is a constant for the drug that is estimated from the experimental data. For example, estimated
pharmacokinetic parameters such as k& depend on the method of tissue sampling, the timing of the sample,
drug analysis, and the predictive model selected.

A pharmacokinetic function relates an independent variable to a dependent variable, often through the use
of parameters. For example, a pharmacokinetic model may predict the drug concentration in the liver 1
hour after an oral administration of a 20-mg dose. The independent variable is time and the dependent
variable is the drug concentration in the liver. Based on a set of time-versus-drug concentration data, a
model equation is derived to predict the liver drug concentration with respect to time. In this case, the drug
concentration depends on the time after the administration of the dose, where the time:concentration
relationship is defined by a pharmacokinetic parameter, k, the elimination rate constant.

Such mathematical models can be devised to simulate the rate processes of drug absorption, distribution,
and elimination to describe and predict drug concentrations in the body as a function of time.
Pharmacokinetic models are used to:

1. Predict plasma, tissue, and urine drug levels with any dosage regimen

2. Calculate the optimum dosage regimen for each patient individually

3. Estimate the possible accumulation of drugs and/or metabolites

4. Correlate drug concentrations with pharmacologic or toxicologic activity

5. Evaluate differences in the rate or extent of availability between formulations (bioequivalence)

6. Describe how changes in physiology or disease affect the absorption, distribution, or elimination of the
drug

7. Explain drug interactions



Simplifying assumptions are made in pharmacokinetic models to describe a complex biologic system
concerning the movement of drugs within the body. For example, most pharmacokinetic models assume
that the plasma drug concentration reflects drug concentrations globally within the body.

A model may be empirically, physiologically, or compartmentally based. The model that simply
interpolates the data and allows an empirical formula to estimate drug level over time is justified when
limited information is available. Empirical models are practical but not very useful in explaining the
mechanism of the actual process by which the drug is absorbed, distributed, and eliminated in the body.
Examples of empirical models used in pharmacokinetics are described in .

Physiologically based models also have limitations. Using the example above, and apart from the necessity
to sample tissue and monitor blood flow to the liver in vivo, the investigator needs to understand the
following questions. What does liver drug concentration mean? Should the drug concentration in the blood
within the tissue be determined and subtracted from the drug in the liver tissue? What type of cell is
representative of the liver if a selective biopsy liver tissue sample can be collected without contamination
from its surroundings? Indeed, depending on the spatial location of the liver tissue from the hepatic blood
vessels, tissue drug concentrations can differ depending on distance to the blood vessel or even on the type
of cell in the liver. Moreover, changes in the liver blood perfusion will alter the tissue drug concentration.
If heterogeneous liver tissue is homogenized and assayed, the homogenized tissue represents only a
hypothetical concentration that is an average of all the cells and blood in the liver at the time of collection.
Since tissue homogenization is not practical for human subjects, the drug concentration in the liver may be
estimated by knowing the liver extraction ratio for the drug based on knowledge of the physiologic and
biochemical composition of the body organs.

A great number of models have been developed to estimate regional and global information about drug
disposition in the body. Some physiologic pharmacokinetic models are also discussed in . Individual
pharmacokinetic processes are discussed in separate chapters under the topics of drug absorption, drug
distribution, drug elimination, and pharmacokinetic drug interactions involving one or all the above
processes. Theoretically, an unlimited number of models may be constructed to describe the kinetic
processes of drug absorption, distribution, and elimination in the body, depending on the degree of detailed
information considered. Practical considerations have limited the growth of new pharmacokinetic models.

A very simple and useful tool in pharmacokinetics is compartmentally based models. For example, assume
a drug is given by intravenous injection and that the drug dissolves (distributes) rapidly in the body fluids.
One pharmacokinetic model that can describe this situation is a tank containing a volume of fluid that is
rapidly equilibrated with the drug. The concentration of the drug in the tank after a given dose is governed
by two parameters: (1) the fluid volume of the tank that will dilute the drug, and (2) the elimination rate of
drug per unit of time. Though this model is perhaps an overly simplistic view of drug disposition in the
human body, a drug's pharmacokinetic properties can frequently be described using a fluid-filled tank
model called the one-compartment open model (see below). In both the tank and the one-compartment
body model, a fraction of the drug would be continually eliminated as a function of time (). In
pharmacokinetics, these parameters are assumed to be constant for a given drug. If drug concentrations in
the tank are determined at various time intervals following administration of a known dose, then the
volume of fluid in the tank or compartment (V' p, volume of distribution) and the rate of drug elimination
can be estimated.

Figure 1-4.

Tank with a constant volume of fluid equilibrated with drug. The volume of the fluid is 1.0 L. The fluid

outlet is 10 mL/min. The fraction of drug removed per unit of time is 10/1000, or 0.01 min™ '



In practice, pharmacokinetic parameters such as k and V p are determined experimentally from a set of
drug concentrations collected over various times and known as data. The number of parameters needed to
describe the model depends on the complexity of the process and on the route of drug administration. In
general, as the number of parameters required to model the data increases, accurate estimation of these
parameters becomes increasingly more difficult. With complex pharmacokinetic models, computer
programs are used to facilitate parameter estimation. However, for the parameters to be valid, the number
of data points should always exceed the number of parameters in the model.

Because a model is based on a hypothesis and simplifying assumptions, a certain degree of caution is
necessary when relying totally on the pharmacokinetic model to predict drug action. For some drugs,
plasma drug concentrations are not useful in predicting drug activity. For other drugs, an individual's
genetic differences, disease state, and the compensatory response of the body may modify the response of a
drug. If a simple model does not fit all the experimental observations accurately, a new, more elaborate
model may be proposed and subsequently tested. Since limited data are generally available in most clinical
situations, pharmacokinetic data should be interpreted along with clinical observations rather than
replacing sound judgment by the clinician. Development of pharmacometric statistical models may help to
improve prediction of drug levels among patients in the population (; ). However, it will be some time
before these methods become generally accepted.

Compartment Models

If the tissue drug concentrations and binding are known, physiologic pharmacokinetic models, which are
based on actual tissues and their respective blood flow, describe the data realistically. Physiologic
pharmacokinetic models are frequently used in describing drug distribution in animals, because tissue
samples are easily available for assay. On the other hand, tissue samples are often not available for human
subjects, so most physiological models assume an average set of blood flow for individual subjects.

In contrast, because of the vast complexity of the body, drug kinetics in the body are frequently simplified
to be represented by one or more tanks, or compartments, that communicate reversibly with each other. A
compartment is not a real physiologic or anatomic region but is considered as a tissue or group of tissues
that have similar blood flow and drug affinity. Within each compartment, the drug is considered to be
uniformly distributed. Mixing of the drug within a compartment is rapid and homogeneous and is
considered to be "well stirred," so that the drug concentration represents an average concentration, and
each drug molecule has an equal probability of leaving the compartment. Rate constants are used to
represent the overall rate processes of drug entry into and exit from the compartment. The model is an
open system because drug can be eliminated from the system. Compartment models are based on linear
assumptions using linear differential equations.

Mammillary Model

A compartmental model provides a simple way of grouping all the tissues into one or more compartments
where drugs move to and from the central or plasma compartment. The mammillary model is the most
common compartment model used in pharmacokinetics. The mammillary model is a strongly connected
system, because one can estimate the amount of drug in any compartment of the system after drug is
introduced into a given compartment. In the one-compartment model, drug is both added to and eliminated
from a central compartment. The central compartment is assigned to represent plasma and highly perfused
tissues that rapidly equilibrate with drug. When an intravenous dose of drug is given, the drug enters
directly into the central compartment. Elimination of drug occurs from the central compartment because
the organs involved in drug elimination, primarily kidney and liver, are well-perfused tissues.

In a two-compartment model, drug can move between the central or plasma compartment to and from the
tissue compartment. Although the tissue compartment does not represent a specific tissue, the mass balance
accounts for the drug present in all the tissues. In this model, the total amount of drug in the body is simply



the sum of drug present in the central compartment plus the drug present in the tissue compartment.
Knowing the parameters of either the one- or two-compartment model, one can estimate the amount of
drug left in the body and the amount of drug eliminated from the body at any time. The compartmental
models are particularly useful when little information is known about the tissues.

Several types of compartment models are described in . The pharmacokinetic rate constants are represented
by the letter k. Compartment 1 represents the plasma or central compartment, and compartment 2
represents the tissue compartment. The drawing of models has three functions. The model (1) enables the
pharmacokineticist to write differential equations to describe drug concentration changes in each
compartment, (2) gives a visual representation of the rate processes, and (3) shows how many
pharmacokinetic constants are necessary to describe the process adequately.

Figure 1-5.

Various compartment models.

Example

Two parameters are needed to describe model 1 (): the volume of the compartment and the elimination rate
constant, k. In the case of model 4, the pharmacokinetic parameters consist of the volumes of
compartments 1 and 2 and the rate constants—=x », &, k 12, and k 21—for a total of six parameters.

In studying these models, it is important to know whether drug concentration data may be sampled directly
from each compartment. For models 3 and 4 (), data concerning compartment 2 cannot be obtained easily
because tissues are not easily sampled and may not contain homogeneous concentrations of drug. If the
amount of drug absorbed and eliminated per unit time is obtained by sampling compartment 1, then the
amount of drug contained in the tissue compartment 2 can be estimated mathematically. The appropriate
mathematical equations for describing these models and evaluating the various pharmacokinetic
parameters are given in the succeeding chapters.

Catenary Model

In pharmacokinetics, the mammillary model must be distinguished from another type of compartmental
model called the catenary model. The catenary model consists of compartments joined to one another like
the compartments of a train (). In contrast, the mammillary model consists of one or more compartments
around a central compartment like satellites. Because the catenary model does not apply to the way most

functional organs in the body are directly connected to the plasma, it is not used as often as the
mammillary model.

Figure 1-6.

Example of caternary model.

Physiologic Pharmacokinetic Model (Flow Model)
Physiologic pharmacokinetic models, also known as blood flow or perfusion models, are pharmacokinetic

models based on known anatomic and physiologic data. The models describe the data kinetically, with the
consideration that blood flow is responsible for distributing drug to various parts of the body. Uptake of
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drug into organs is determined by the binding of drug in these tissues. In contrast to an estimated tissue
volume of distribution, the actual tissue volume is used. Because there are many tissue organs in the body,
each tissue volume must be obtained and its drug concentration described. The model would potentially
predict realistic tissue drug concentrations, which the two-compartment model fails to do. Unfortunately,
much of the information required for adequately describing a physiologic pharmacokinetic model are
experimentally difficult to obtain. In spite of this limitation, the physiologic pharmacokinetic model does
provide much better insight into how physiologic factors may change drug distribution from one animal
species to another. Other major differences are described below.

First, no data fitting is required in the perfusion model. Drug concentrations in the various tissues are
predicted by organ tissue size, blood flow, and experimentally determined drug tissue—blood ratios (ie,
partition of drug between tissue and blood).

Second, blood flow, tissue size, and the drug tissue—blood ratios may vary due to certain pathophysiologic
conditions. Thus, the effect of these variations on drug distribution must be taken into account in
physiologic pharmacokinetic models.

Third, and most important of all, physiologically based pharmacokinetic models can be applied to several
species, and, for some drugs, human data may be extrapolated. Extrapolation from animal data is not
possible with the compartment models, because the volume of distribution in such models is a
mathematical concept that does not relate simply to blood volume and blood flow. To date, numerous
drugs (including digoxin, lidocaine, methotrexate, and thiopental) have been described with perfusion
models. Tissue levels of some of these drugs cannot be predicted successfully with compartment models,
although they generally describe blood levels well. An example of a perfusion model is shown in .

Figure 1-7.

Pharmacokinetic model of drug perfusion. The £'s represent kinetic constants: & . is the first-order rate
constant for urinary drug excretion and & m is the rate constant for hepatic elimination. Each "box"
represents a tissue compartment. Organs of major importance in drug absorption are consid-ered
separately, while other tissues are grouped as RET (rapidly equilibrating tissue) and SET (slowly
equilibrating tissue). The size or mass of each tissue compartment is determined physiologically rather
than by mathematical estimation. The concentration of drug in the tissue is determined by the ability of
the tissue to accumulate drug as well as by the rate of blood perfusion to the tissue, represented by Q.

The number of tissue compartments in a perfusion model varies with the drug. Typically, the tissues or
organs that have no drug penetration are excluded from consideration. Thus, such organs as the brain, the
bones, and other parts of the central nervous system are often excluded, as most drugs have little
penetration into these organs. To describe each organ separately with a differential equation would make
the model very complex and mathematically difficult. A simpler but equally good approach is to group all
the tissues with similar blood perfusion properties into a single compartment.

A perfusion model has been used successfully to describe the distribution of lidocaine in blood and various
organs. In this case, organs such as lung, liver, brain, and muscle were individually described by
differential equations, whereas other tissues were grouped as RET (rapidly equilibrating tissue) and SET
(slowly equilibrating tissue), as shown in . shows that the blood concentration of lidocaine declines
biexponentially and was well predicted by the physiologic model based on blood flow. The tissue lidocaine
level in the lung, muscle, and adipose and other organs is shown in . The model shows that adipose tissue
accumulates drugs slowly because of low blood supply. In contrast, vascular tissues, like the lung,
equilibrate rapidly with the blood and start to decline as soon as drug level in the blood starts to fall. The
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physiologic pharmacokinetic model provides a realistic means of modeling tissue drug levels.
Unfortunately, the simulated tissues levels in cannot be verified in humans because drug levels in tissues
are not available. A criticism of physiologic pharmacokinetic models in general has been that there are
fewer data points than parameters that one tries to fit. Consequently, the projected data are not well
constrained.

Figure 1-8.

Observed mean ( ) and simulated (—) arterial lidocaine blood concentrations in normal volunteers
receiving 1 mg/kg per min constant infusion for 3 minutes.

(, with permission; data from Tucker GT, Boas RA: Anesthesiology34:538, 1971.)

Figure 1-9.

Perfusion model simulation of the distribution of lidocaine in various tissues and its elimination from
humans following an intravenous infusion for 1 minute.

(From , with permission.)

The real significance of the physiologically based model is the potential application of this model in the
prediction of human pharmacokinetics from animal data (). The mass of various body organs or tissues,
extent of protein binding, drug metabolism capacity, and blood flow in humans and other species are often
known or can be determined. Thus, physiologic and anatomic parameters can be used to predict the effects
of drugs on humans from the effects on animals in cases where human experimentation is difficult or
restricted.

Frequently Asked Questions

1. Why is plasma or serum drug concentration, rather than blood concentration, used to monitor drug
concentration in the body?
2. What are reasons to use a multicompartment model instead of a physiologic model?
3. At what time should plasma drug concentration be taken in order to best predict drug response and side
effects?

Learning Questions

1. What is the significance of the plasma level-time curve? How does the curve relate to the pharmacologic
activity of a drug?

2. What is the purpose of pharmacokinetic models?

3. Draw a diagram describing a three-compartment model with first-order absorption and drug elimination
from compartment 1.

4. The pharmacokinetic model presented in represents a drug that is eliminated by renal excretion, biliary
excretion, and drug metabolism. The metabolite distribution is described by a one-compartment open model.
The following questions pertain to .

a. How many parameters are needed to describe the model if the drug is injected intravenously (ie, the rate
of drug absorption may be neglected)?

b. Which compartment(s) can be sampled?

¢. What would be the overall elimination rate constant for elimination of drug from compartment 1?

d. Write an expression describing the rate of change of drug concentration in compartment 1 (dC 1/df).
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Figure 1-10.

Pharmacokinetic model for a drug eliminated by renal and biliary excretion and drug metabolism.
k m = rate constant for metabolism of drug; k , = rate constant for urinary excretion of metabolites;
k v = rate constant for biliary excretion of drug; and k . = rate constant for urinary drug excretion.

5. Give two reasons for the measurement of the plasma drug concentration, C , assuming (a) the C , relates
directly to the pharmacodynamic activity of the drug and (b) the C , does not relate to the pharmacodynamic
activity of the drug.
6. Consider two biologic compartments separated by a biologic membrane. Drug A is found in compartment
1 and in compartment 2 in a concentration of ¢ 1 and c », respectively.
a. What possible conditions or situations would result in concentration ¢ | > ¢ ; at equilibrium?
b. How would you experimentally demonstrate these conditions given above?
¢. Under what conditions would ¢ | = ¢ ; at equilibrium?
d. The total amount of Drug A in each biologic compartment is 4 ; and A4 », respectively. Describe a
condition in which 4 1 > 4 », but ¢ 1 = ¢ ; at equilibrium.
Include in your discussion, how the physicochemical properties of Drug A or the biologic properties of each
compartment might influence equilibrium conditions.
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