

Introduction to Drug Discovery and Development

By: Dr. Dhulfiqar Ali Abed

Introduction to Drug Discovery and Development

What is Drug Discovery?

- The Process by which new medicines are identified.
- Involves interdisciplinary approaches of
 - Biochemistry, molecular biology, organic chemistry, physical biochemistry, pharmacology, cell biology and physiology

Introduction to Drug Discovery and Development

Investigational New Drug (IND) Application

- ❑ *A request for authorization from FDA to administer an IND or biologic product to humans*
 - This is literally seeking permission to perform a clinical trial.
- ❑ The trial can proceed if the FDA does not file a hold within 30 days of receiving the application
- ❑ The application must contain information on:
 - Animal pharmacology and toxicology studies
 - Manufacturing processes and procedures for the drug or biologic

New Drug Application (NDA)

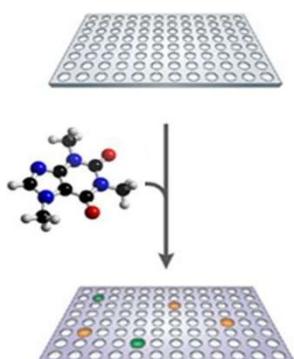
- ❑ *When the sponsor of a new drug has enough evidence of the drug's safety and effectiveness has been obtained to meet FDA's marketing approval an NDA.*
- ❑ If the NDA is approved by the FDA the product can be marketed in the U.S.
- ❑ The application must contain data from specific technical viewpoints including:
 - nonclinical pharmacology and toxicology
 - chemistry, manufacturing and controls
 - clinical pharmacology
 - Medical
 - Statistics

Drug Development Terminology

- ❑ Hit: Some positive result, usually with low specificity and low efficacy (mM range) of a drug screen, often times **via high throughput screen**
- ❑ Lead (compound): Suboptimal drug that needs modification to better fit the target for higher efficacy and less off-target effect

ADME: Lipinski's rules of five

ADME: Absorption, distribution, metabolism and excretion .


- Method to **determine potential biological activity in an oral drug.**
 - Also known as Pfizer's rule of five
 - Number of H-Bond donors no more than 5
 - Number of H-bond acceptors, 10 or less
 - Molecular Weight <500 da
 - ClogP (partition coefficient between octanol/water) is a measure of lipophilicity. ClogP < 5

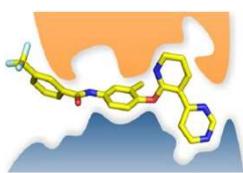
Screening Strategies

- High Throughput Large # of compounds
- Focused Screen Use identified classes of small molecules
- Fragment Screen (portions of compounds)
- Virtual Screen Docking and molecule dynamic approaches
- Physiological Screen Tissue or animal impact

High Throughput Screening (HTS)

- Hundreds of small molecule libraries exists and are created
- Need way to evaluate each quickly and inexpensively.
- 96well (multiples of to 1,152!) wells holding compounds, plasmid DNA, and other reagents.
- Purified proteins and cell based assays allow for screening of “activity” to discover a “hit”

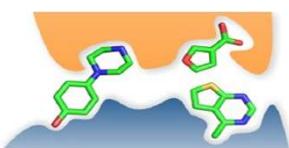
- Small molecule libraries
 - FDA-approved drugs
 - Diversity-oriented synthesis
 - Natural products


Fragment Based Drug Discovery - Why is there the need for new methodology?

- ❑ While HTS generally works for most, enzyme classes in some cases this does not work
- ❑ The limitations of HTS was highlighted by researchers from GSK who examined success rates in antibiotic drug discovery.
- ❑ This trend is also showing up with some protein-protein interaction targets
- ❑ FBDD the way forward with these targets?

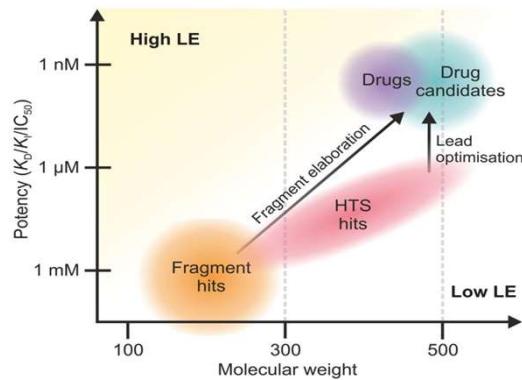
New Approach FBDD

Fragment Based Drug Design – novel approach using smaller compounds...

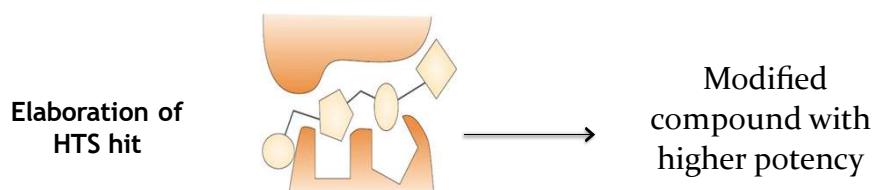

Typical compound hit from HTS screen

- Large molecule (MW between 250 – 600)
- Broad surface contact with no high quality interactions in key pockets
- May contain functional groups that contribute poorly to protein binding
- Emphasis on potency (30 μ M – nM hit activity)

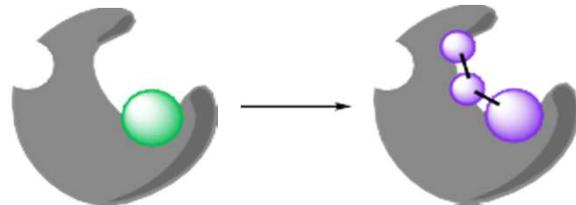
The idea that large molecules can be considered combinations of two or more individual fragments is a fundamental principle of fragment-based drug discovery


Typical compound hits from FBDD

- Smaller molecule MW between (150-300)
- High proportion of the functional groups involved in binding
- Clearly interacts with pockets
- Potency in the range of mM to 30 μ M
- Emphasis on efficiency and design

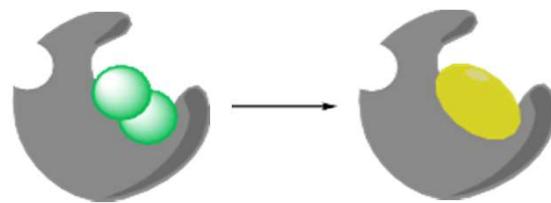

HTS vs FBDD

- ❑ lower HTS yield low $\mu\text{M} - \text{nM}$
- ❑ Fragments potent but can be “built”


How is a Fragment Increased

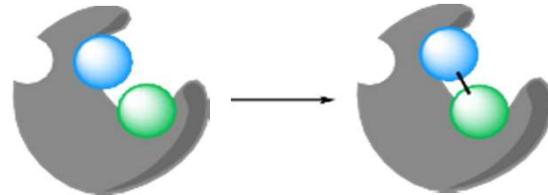
- ❖ Goal is to increase potency, to move from mM to $\sim 10 \text{ nM}$

Fragment Elaboration


Fragment Growing

- Most successful and frequent method of increasing potency
- Typically a single fragment in a binding pocket is 'grown' using chemical synthesis to pick up further interactions with the protein.
- *This is the case that is the most likely to arise where a single fragment binds to protein or multiple fragments bind to a specific area of the binding pocket*
- *X-Ray information on how the ligand binds to the protein is key to guiding fragment development.*

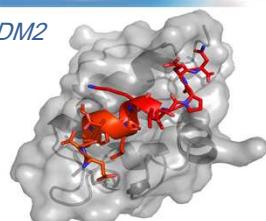
Fragment Elaboration


Fragment Merging

- *Find several fragments binding in close proximity*
- *Chemical synthesis uses overlap to design lead compound*
- *X-ray information on how the ligand binds to the protein is key to guiding fragment development, steps of merging overlapping compounds is "tricky" sometimes loss of binding occurs*

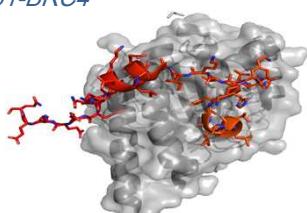
Fragment Elaboration

Fragment Linking



- Create flexible linkers between different binding pocket/ligands
- Considered best way to increase potency can be created similar to HTS lead development
- Linked compound should have higher binding affinity with correct linker
- Considered the most difficult

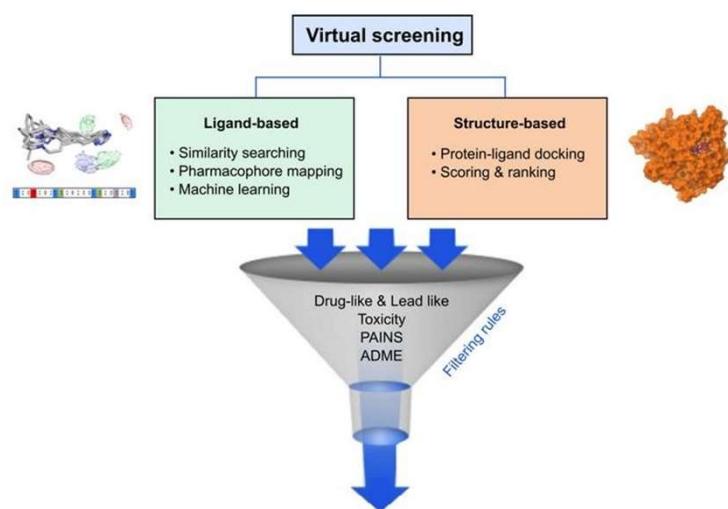
Few examples of this have been successfully produced – but often against protein-protein undruggable interactions


Why protein-protein interactions as targets?

p53-HDM2

- ❖ Protein-Protein interactions (PPI's) are found throughout biological systems. Typically these are defined as difficult targets as success rates in targeting these has been low especially using HTS approaches.

RAD51-BRC4


- ❖ Unlike conventional targets they do not have distinct binding pockets however they have what is known as 'hot-spots' typically on the surface of the protein

- ❖ FBDD has been used successfully against a number of these targets however none to date have been approved as drugs although in a number of cases there are compounds in Phase I/II development.

Virtual Screening (VS)

- The process of screening large databases on the computer for molecules having desired properties and biological activity and also to predict their binding to a target receptor.
- Use of high-performance computing to analyze large database of chemical compounds in order to identify possible drug candidates.
- It has evolved over the past decade as a well accepted strategy in the discovery of new lead compounds.

Virtual Screening (VS)

Significance of Virtual Screening ?

- ❑ VS is a computational filter:
 - Reduces the size of a chemical library to be screened experimentally–Saves time & money
- ❑ May improve likelihood of finding interesting compounds
 - As opposed to random screening, Enhance “hit rates”
- ❑ HTS versus VS:
 - Use VS to exclude compounds which are predicted not to bind, helping to “enrich” the library
 - VS can also help to identify false-negatives in HTS