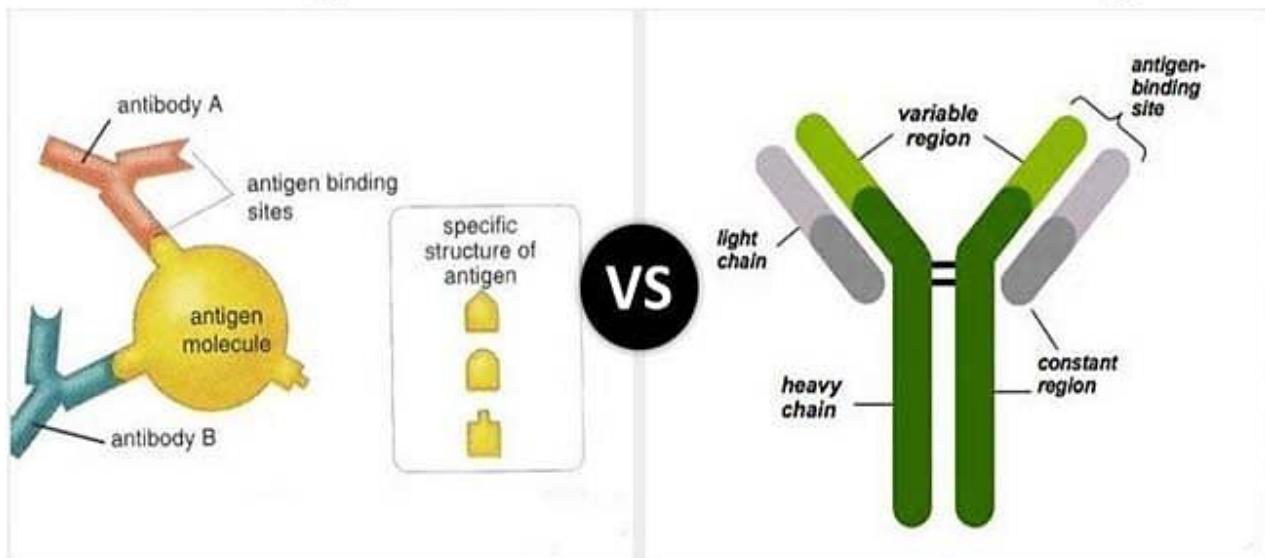


Antigens – Definition, Properties, and Classification

Definition of Antigen

The term **antigen** is derived from "antibody generator," reflecting its ability to stimulate the production of antibodies. An **antigen (Ag)** is any substance, typically a protein or polysaccharide, that can be specifically recognized by components of the immune system, particularly **B cells** and **T cells**, leading to an immune response.


Key points in defining an antigen:

- Must be recognized as **foreign (non-self)** by the immune system.
- Can induce the production of **specific antibodies** (humoral immunity) or activate **T cells** (cell-mediated immunity).

Includes **proteins, glycoproteins, lipids, polysaccharides**, and sometimes **nucleic acids**

Antigens

Antibody

Classification of Antigens

Antigens can be classified based on several criteria:

A. Source

1. **Exogenous Antigens:** Enter the body from outside (e.g., microbes, pollen, toxins).
2. **Endogenous Antigens:** Generated within the body (e.g., viral proteins produced inside infected cells, tumor antigens).
3. **Autoantigens:** Normal body molecules that the immune system mistakenly recognizes as foreign in autoimmune diseases.
4. **Alloantigens:** Found in genetically different members of the same species (e.g., blood group antigens, transplant antigens).

B. Chemical Nature

1. **Proteins:** Highly immunogenic due to complex structure; examples include bacterial toxins.
2. **Polysaccharides:** Moderate immunogenicity; examples include bacterial capsules.
3. **Lipids:** Poorly immunogenic unless bound to proteins (forming glycolipids or lipoproteins).
4. **Nucleic acids:** Generally weak immunogens; often require carriers to elicit a response.

C. Immunogenicity and Reactivity

1. **Complete Antigens (Immunogens):** Can induce an immune response independently and react with antibodies. Example: tetanus toxoid.
2. **Haptens (Incomplete Antigens):** Cannot elicit an immune response alone; must bind to a carrier molecule. Example: penicillin.

Properties of Antigens: it is essential for predicting immune responses.

A. Immunogenicity

The ability to **stimulate an immune response** depends on:

- Molecular size (larger molecules are more immunogenic) and complex.
- Foreignness (difference from host molecules)
- Degradability (must be processed for presentation by MHC molecules)

B. Antigenicity

The ability to **react specifically with antibodies or T-cell receptors**. Note that **all immunogens are antigenic, but not all antigens are immunogenic** (e.g., haptens).

C. Specificity

Each antigen possesses unique **antigenic determinants (epitopes)** recognized by specific antibodies or T cells. A single antigen may contain multiple epitopes.

D. Valency

Refers to the **number of antigenic determinants** on a molecule capable of binding to antibodies. Polyclonal responses can target multiple epitopes on the same antigen.

E. Cross-reactivity

Some antigens share similar epitopes with others, leading to cross-reactions. Example: antibodies against cowpox virus can react with smallpox virus (basis of vaccination).

F. Complexity

Protein antigens are usually more complex and highly immunogenic than polysaccharides or lipids.

Mechanisms of Antigen Recognition

- **B-cell recognition:** Direct binding of antigens to **B-cell receptors (BCRs);** mainly protein or polysaccharide antigens.
- **T-cell recognition:** Requires processing and presentation by **Major Histocompatibility Complex (MHC)** molecules.
- **Antigen-presenting cells (APCs):** Dendritic cells, macrophages, and B cells capture and process antigens, presenting them to T cells.

Factors Affecting Antigenicity

1. **Foreignness** – more difference from host = stronger response.
2. **Size** – molecules >10 kDa are typically immunogenic.
3. **Chemical composition** – proteins $>$ polysaccharides $>$ lipids in immunogenicity.
4. **Structural complexity** – highly branched or folded molecules stimulate stronger immune responses.
5. **Route of administration** – subcutaneous and intradermal routes are more immunogenic than oral.
6. **Dose** – intermediate doses often elicit the best response.

Clinical Relevance of Antigens

- **Vaccine design:** Selecting strong immunogenic antigens to produce protective immunity.
- **Autoimmune diseases:** Immune system attacks self-antigens.
- **Allergic reactions:** Overreaction to harmless environmental antigens (allergens).
- **Transplantation:** Alloantigens influence graft rejection.

Cell and T-Cell Epitopes

An **epitope**, also called an **antigenic determinant**, is the specific portion of an antigen recognized by the immune system.

1. B-Cell Epitopes

A **B-cell epitope** is the part of an antigen that is recognized and bound directly by a **B-cell receptor (BCR)** or by an antibody in solution. The binding triggers **B-cell activation**, leading to antibody production.

Characteristics

1. **Recognition:** in their **native three-dimensional conformation**, meaning they do not require processing by antigen-presenting cells (APCs).
2. **Types of B-cell Epitopes:**
 - **Linear (Sequential) Epitopes:** Composed of consecutive amino acids in a protein's primary sequence. Example: peptide fragments in vaccines.
 - **Conformational (Discontinuous) Epitopes:** Formed by amino acids brought together by the protein's three-dimensional folding. Most natural protein epitopes are conformational.
3. **Size:** Typically 5–20 amino acids for peptides or small patches on larger molecules.
4. **Accessibility:** Must be exposed on the surface of the antigen to allow BCR or antibody binding.

Examples

- The **hemagglutinin protein of influenza** contains conformational epitopes recognized by neutralizing antibodies.

- **Bacterial polysaccharides** can serve as B-cell epitopes, particularly in capsular vaccines.

Clinical Relevance

- **Vaccine development** relies heavily on identifying B-cell epitopes to elicit effective humoral immunity.
- **Monoclonal antibody therapies** target specific B-cell epitopes for neutralization of pathogens or cancer cells.

2. T-Cell Epitopes

A **T-cell epitope** is a peptide fragment of an antigen presented on the surface of **antigen-presenting cells (APCs)** bound to **Major Histocompatibility Complex (MHC) molecules**, recognized by **T-cell receptors (TCRs)**. T-cell recognition is essential for **cell-mediated immunity** and the activation of B cells.

Characteristics

1. **Processing Requirement:** process into short peptides (typically 8–25 amino acids) by APCs.
2. **Presentation:**
 - **MHC Class I:** Presents intracellularly derived peptides (usually 8–11 amino acids) to **CD8+ cytotoxic T cells**.
 - **MHC Class II:** Presents extracellularly derived peptides (usually 13–25 amino acids) to **CD4+ helper T cells**.
3. **Linear Epitopes:** are **always linear**, as the protein is degraded into peptides for MHC presentation.
4. **Specificity:** The TCR recognizes both the **peptide** and the **MHC molecule**, making T-cell recognition highly specific.

Examples

- Viral peptides from influenza matrix protein recognized by CD8+ T cells.

- Bacterial antigens processed and presented to CD4+ T cells, triggering cytokine release and B-cell help.

Clinical Relevance

- **Vaccine design:** Identifying T-cell epitopes ensures robust cellular immunity, critical for intracellular pathogens like viruses and some bacteria.
- **Autoimmune diseases:** Aberrant recognition of self-peptides as T-cell epitopes can trigger tissue damage.
- **Transplantation:** Recognition of alloantigens as T-cell epitopes leads to graft rejection.

3. Comparison of B-Cell and T-Cell Epitopes

Feature	B-Cell Epitopes	T-Cell Epitopes
Recognition	BCR or antibody	TCR + MHC molecule
Structure	Linear conformational	or Always linear (peptide)
Requirement processing	for Not required	Required (processed by APCs)
Location	Surface-exposed	Presented on MHC molecules
Size	5–20 amino acids	8–25 amino acids
Role	Humoral immunity	Cellular immunity

Lecture four

Dr. wurood &Dr. Zaid

