

Lec 8 part 2 / Sickle Cell Anemia

Definition :Sickle cell anemia is an inherited hemolytic anemia caused by a structural abnormality of hemoglobin (HbS), leading to chronic hemolysis, vaso-occlusion, and organ damage.

Pathogenesis

- A point mutation occurs in the β -globin gene on chromosome 11
- Glutamic acid is replaced by valine at position 6 of the β -globin chain
- This produces Hemoglobin S (HbS)

Mechanism:

1. Under low oxygen tension, HbS polymerizes
2. RBCs become rigid and sickle-shaped
3. Leads to:
 - Hemolysis (shortened RBC lifespan ~10–20 days)
 - Vaso-occlusion → ischemia and pain
 - Splenic damage → functional asplenia

Triggers of sickling:

- Hypoxia
- Dehydration
- Infection
- Acidosis
- Cold exposure

Causes:

- Autosomal recessive inheritance
- Occurs when an individual inherits two HbS genes (HbSS)
- Common in :Africa , Middle East, Mediterranean region India

Signs and Symptoms:

1.General:

- Chronic anemia → fatigue, pallor
- Jaundice (due to hemolysis)

2.Painful (Vaso-occlusive) Crises:

- Severe bone pain
- Dactylitis (hand-foot syndrome) in children
- Chest pain (acute chest syndrome)

3. Organ-related:

- Splenomegaly in early childhood → autosplenectomy later
- Increased infections (especially encapsulated bacteria)
- Stroke
- Leg ulcers
- Delayed growth and puberty
- Priapism (males)

Laboratory Diagnosis:

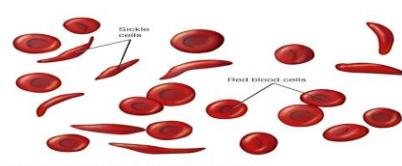
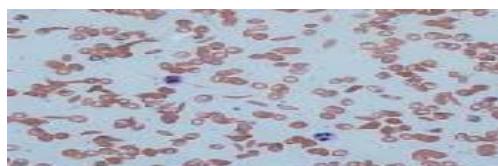
1. Complete Blood Count (CBC):

- Hemoglobin ↓
- Normocytic or mildly macrocytic anemia
- Reticulocyte count ↑

2. Peripheral Blood Smear:

- Sickle-shaped RBCs
- Target cells
- Howell–Jolly bodies (functional asplenia)
- Polychromasia

3. Sickling Test (Screening):



- Sodium metabisulfite induces sickling (positive)

4. Hemoglobin Electrophoresis (Confirmatory)

- HbS present
- ↓ or absent HbA
- ↑HbF (protective)

5. Other Findings:

- ↑Indirect bilirubin
- ↑LDH
- ↓Haptoglobin

