

LAPLACE TRANSFORMATION

Laplace Transform: The laplace transform (L.T) is a powerful method for solving differential equations and corresponding initial and boundary value problems. Let $f(t)$ be a time function which is zero for $t \leq 0$, and which is defined for $t > 0$. Then, the direct L.T of $f(t)$ denoted $\mathcal{L}[f(t)] = F(s) = \int_0^{\infty} f(t) \cdot e^{-st} dt$ is defined by:

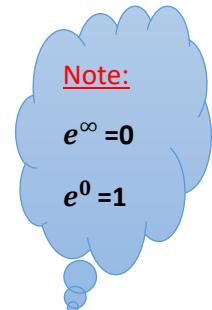
$$\mathcal{L}[f(t)] = F(s) = \int_0^{\infty} f(t) \cdot e^{-st} dt$$

Thus, the operation $\mathcal{L}[\quad]$ transforms $f(t)$, which is in the time domain, into $F(s)$, which is in the complex frequency domain, or simply (S-domain) where S is the complex variable $(\sigma + j\omega)$.

Ex.1: The laplace transform of the unit step function $u(t)$:

$$\begin{aligned} \mathcal{L}[u(t)] = F(s) &= \int_0^{\infty} 1 \cdot e^{-st} dt \\ &= \frac{-1}{s} [e^{-st}]_0^{\infty} = \int_0^{\infty} 1 \cdot e^{-st} dt \\ &= \frac{1}{s} \end{aligned}$$

So, $\mathcal{L}[1] = \frac{1}{s}$



Ex.2: $f(t)=3$

$$\begin{aligned} \mathcal{L}[3] = F(s) &= \int_0^{\infty} 3 \cdot e^{-st} dt \\ &= \frac{-3}{s} [e^{-st}]_0^{\infty} = \int_0^{\infty} 1 \cdot e^{-st} dt = \frac{3}{s} \end{aligned}$$

So, $\mathcal{L}[constant] = \frac{constant}{s}$

Ex.3: $f(t)=t$

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty t \cdot e^{-st} dt$$

By using part method ($\int u dv = uv - \int v du$),

Let $u = t \quad dv = e^{-st} dt$

$$du = dt \quad v = \frac{1}{-s} e^{-st}$$

$$\begin{aligned} &= t \cdot \frac{1}{-s} [e^{-st}]_0^\infty - \int_0^\infty \frac{1}{-s} e^{-st} dt = \left[\frac{-t}{s} \cdot e^{-st} \right]_0^\infty + \frac{1}{s} \int_0^\infty e^{-st} dt \\ &= \frac{-t}{s} [e^{-st}]_0^\infty - \left[\frac{1}{s^2} \cdot e^{-st} \right]_0^\infty \end{aligned}$$

So, $\mathcal{L}[t] = \frac{1}{s^2}$

Ex.4: $f(t) = t^2$

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty t^2 \cdot e^{-st} dt$$

Again by using part method ($\int u dv = uv - \int v du$),

Let $u = t^2 \quad dv = e^{-st} dt$

$$du = 2t dt \quad v = \frac{1}{-s} e^{-st}$$

$$= t^2 \cdot \frac{1}{-s} [e^{-st}]_0^\infty + \int_0^\infty \frac{2}{s} e^{-st} \cdot t dt$$

The first term is zero, and using the above result of (Ex.3) $\mathcal{L}[t] = \frac{1}{s^2}$, the integral reduces to:

$$\mathcal{L}[t^2] = \frac{2}{s^3}$$

- In general, if the transforms are worked out for higher power of t, it will

found that: $(t) = t^n \Rightarrow \mathcal{L}[t] = \frac{n!}{s^{n+1}}$, for $s-a>0$

Theorem 1: Linearity of the Laplace transformation

For any function $f(t)$ and $g(t)$ whose laplace transform exist and any constant a & b , we have:

$$\mathcal{L}[af(t) \mp bg(t)] = a\mathcal{L}[f(t)] \mp b\mathcal{L}[g(t)]$$

Proof:
$$\begin{aligned} \mathcal{L}[af(t) \mp bg(t)] &= \int_0^\infty e^{-st} [af(t) \mp bg(t)] dt \\ &= a \int_0^\infty e^{-st} f(t) dt + b \int_0^\infty e^{-st} g(t) dt \\ &= a\mathcal{L}[f(t)] + b\mathcal{L}[g(t)] \end{aligned}$$

Shift theorem for the Laplace transform

There are two shift theorems, which simplify the task of working with the L.T. The first involves a shift of the variable S to $S-a$, and the second a shift of the variable t to $t-a$, where $a>0$ is arbitrary constant.

Theorem 2: a first shifting theorem

Let $\mathcal{L}[f(t)] = F(s)$, then $\mathcal{L}[e^{at} f(t)] = F(s-a)$

Proof:
$$F(s) = \int_0^\infty e^{-st} \cdot f(t) dt$$

So,
$$\mathcal{L}[e^{at} f(t)] = \int_0^\infty f(t) e^{at} \cdot e^{-st} dt = \int_0^\infty f(t) e^{-(s-a)t} dt = F(s-a)$$

i.e. the multiplication of $f(t)$ by (e^{at}) shifts the variable (s) in the L.T. to $(s-a)$.

Ex.6: let $f(t) = \cosh at = \frac{e^{at} + e^{-at}}{2}$. Find $\mathcal{L}[f(t)]$.

Sol. From theorem 1,

$$\mathcal{L}[\cosh at] = \frac{1}{2} \mathcal{L}[e^{at}] + \frac{1}{2} \mathcal{L}[e^{-at}] = \frac{1}{2} \left[\frac{1}{s-a} + \frac{1}{s+a} \right], \text{ where } s > a (\geq 0).$$

So,
$$\mathcal{L}[\cosh at] = \frac{s}{s^2 - a^2}$$

Ex.7: $f(t) = e^{j\omega t}$. $\mathcal{L}[f(t)]$.

$$\begin{aligned}\mathbf{Sol.} \mathcal{L}[e^{j\omega t}] &= \int_0^\infty e^{j\omega t} \cdot e^{-st} dt = \int_0^\infty e^{-(s-j\omega)t} dt \\ &= \frac{1}{s-j\omega} \times \frac{s+j\omega}{s+j\omega} \Rightarrow \frac{s}{s^2+\omega^2} + \frac{j\omega}{s^2+\omega^2}\end{aligned}$$

We know that $e^{j\omega t} = \cos \omega t + j \sin \omega t$

$$\mathcal{L}[e^{j\omega t}] = \mathcal{L}[\cos \omega t] + j \mathcal{L}[\sin \omega t]$$

Applying linearity theorem,

$$\mathcal{L}[\cos \omega t] = \frac{s}{s^2+\omega^2} \quad \text{and} \quad \mathcal{L}[\sin \omega t] = \frac{\omega}{s^2+\omega^2}$$

Ex.8: $f(t) = t \cdot e^{at}$. Find $\mathcal{L}[f(t)]$.

$\mathcal{L}(t) = \frac{1}{s^2}$, applying the 1st shifting theorem:

$$\mathcal{L}[t \cdot e^{at}] = \frac{1}{(s-a)^2}$$

Ex.9: $f(t) = e^{-at} \cdot \cos \omega t$

$\mathcal{L}(\cos \omega t) = \frac{s}{s^2+\omega^2}$, apply 1st shifting theorem:

$$\mathcal{L}(e^{-at} \cdot \cos \omega t) = \frac{s+a}{(s+a)^2 + \omega^2}$$

Exercise: 1) $\mathcal{L}[e^{at} \cos bt] = \frac{s-a}{(s-a)^2+b^2}$

2) $\mathcal{L}[e^{at} \sin bt] = \frac{b}{(s-a)^2+b^2}$

3) $\mathcal{L}[t \cos at] = \frac{s^2-a^2}{(s^2+b^2)^2}$

If $\mathcal{L}[f(t)] = F(s)$ and $g(t) = \begin{cases} f(t-a) & \dots \dots t > a \\ 0 & \dots \dots t < a \end{cases}$

i.e $\mathcal{L}[g(t)] = e^{-as} F(s)$

Proof: $\mathcal{L}[g(t)] = \int_0^\infty f(t-a) e^{-st} dt$ changing the variable in the integral to $(t-a)=\tau$, $dt=d\tau$

$$G(s) = \int_0^{\infty} f(\tau) e^{-s(a+\tau)} dt = e^{-as} \int_0^{\infty} e^{-s\tau} \cdot f(\tau) dt = e^{-as} F(s)$$

Ex.10: The L.T of $f(t - \frac{\pi}{4})$ when $f(t) = t \sin 2t$.

$$\text{Sol. } \mathcal{L}[f(t)] = \mathcal{L}[t \sin 2t] = \frac{4s}{(s^2+4)^2}$$

$$\text{now, } \mathcal{L}\left[f(t - \frac{\pi}{4})\right] = e^{-\frac{\pi}{4}s} \cdot \frac{4s}{(s^2+4)^2}$$

Laplace of $[T \sin at]$
 $= \frac{2as}{(s^2+a^2)^2}$

Theorem 4: Change of scale

If $F(s) = \mathcal{L}[f(t)]$

$$\therefore \mathcal{L}[f(at)] = \frac{1}{a} F\left(\frac{s}{a}\right)$$

Proof: $\mathcal{L}[f(at)] = \int_0^{\infty} f(at) e^{-st} dt$

Let $at=u \Rightarrow a \cdot dt = du$

$$\begin{aligned} \mathcal{L}[f(at)] &= \int_0^{\infty} f(u) e^{-\frac{su}{a}} \cdot \frac{1}{a} du = \frac{1}{a} \int_0^{\infty} f(u) e^{-\frac{su}{a}} du \\ &= \frac{1}{a} F(s/a). \end{aligned}$$

Ex. 11: $f(t) = \sin 2t$

$$\text{Sol. } \mathcal{L}[\sin t] = \frac{1}{s^2+1} \quad \& \quad \mathcal{L}[\sin 2t] = \frac{1}{2} \cdot \frac{1}{\frac{s^2}{4}+1} = \frac{1}{2} \cdot \frac{1}{(s^2+4)/4}$$

$$= \frac{2}{s^2+4}$$

Exercise: $f(t) = \cos 3t$

Table 1 of Laplace transform:

#	F(t)	F(s)
1	1	$1/s$
2	t	$1/s^2$
3	e^{-at}	$\frac{1}{s+a}$
4	$t e^{-at}$	$\frac{1}{(s+a)^2}$
5	$\sin wt$	$\frac{w}{s^2 + w^2}$
6	$\cos wt$	$\frac{s}{s^2 + w^2}$
7	$e^{-at} \sin wt$	$\frac{w}{(s+a)^2 + w^2} \dots s > a$
8	$e^{-at} \cos wt$	$\frac{s+a}{(s+a)^2 + w^2} \dots s > a$
9	$t \sin at$	$\frac{2as}{(s^2 + a^2)^2} \dots s > 0$
10	$t \cos at$	$\frac{s^2 - a^2}{(s^2 + a^2)^2}$
11	$\sinh wt$	$\frac{w}{s^2 - w^2}$
12	$\cosh wt$	$\frac{w}{s^2 - w^2}$
	Any more...?

The Inverse Laplace Transform

If $\mathcal{L}[f(t)] = F(s)$ then $\Rightarrow f(t) = \mathcal{L}^{-1}[F(s)]$, which is called Inverse Laplace Transform (I.L.T). Usually the table of Laplace transform pairs (page 6) are used.

Ex. 13: Given $F(s) = \frac{1}{s-2}$. Find $f(t)$.

Sol. $F(t) = \mathcal{L}^{-1}[F(s)] = \mathcal{L}^{-1}\left[\frac{1}{s-2}\right] = e^{2t}$ (see table 1, #3)

Ex. 14: If $F(s) = \frac{2}{s+2}$. Find $f(t)$.

Sol. $F(t) = \mathcal{L}^{-1}[F(s)] = \mathcal{L}^{-1}\left[\frac{2}{s+2}\right] = 2 \cdot e^{-2t}$ (see table 1, #3)

Ex. 15: If $F(s) = \frac{10s}{s^2+4} - \frac{3}{s^2+16}$. Find $f(t)$.

Sol. $F(s) = 10 \cdot \frac{s}{s^2+2^2} - 3 \cdot \frac{1}{s^2+4^2}$

$$\frac{1}{s^2+4^2} = \frac{1}{4} \cdot \frac{4}{s^2+4^2}$$

$F(t) = \mathcal{L}^{-1}\left[10 \cdot \frac{s}{s^2+2^2} - 3 \cdot \frac{1}{4} \cdot \frac{4}{s^2+4^2}\right] = 10 \cos 2t - \frac{3}{4} \sin 4t$ (see table 1, #5&6)

Ex. 16: If $F(s) = \frac{1}{s^2-2s+5}$. Find $f(t)$

Sol. $F(s) = \frac{1}{s^2-2s+5} = \frac{1}{s^2-2s+1+4} = \frac{1}{(s-1)^2+2^2}$

$\therefore F(s) = \frac{1}{2} \cdot \frac{2}{(s-1)^2+2^2}$

$\mathcal{L}^{-1}\left[\frac{1}{2} \cdot \frac{2}{(s-1)^2+2^2}\right] = \frac{1}{2} e^t \sin 2t$ (See table 1, #7)

Ex. 17: If $F(s) = \frac{4}{s^2} + \frac{7}{s^2+1}$. Find $f(t)$, for $s>0$

Sol. $F(t) = \mathcal{L}^{-1}[F(s)] = \mathcal{L}^{-1}\left[\frac{4}{s^2} + \frac{7}{s^2+1}\right] = 4\mathcal{L}^{-1}\left[\frac{1}{s^2}\right] + 7\mathcal{L}^{-1}\left[\frac{1}{s^2+1}\right]$

$\therefore f(t) = 4t + 7 \sin t$ (entries 2&5)

Ex. 18: Find $f(t)$ given that $F(s) = \frac{7s^2+18}{s(s^2+9)}$

Sol. Using the partial fractions, re-express $F(s)$ as:

$$\frac{7s^2 + 18}{s(s^2 + 9)} = \frac{As}{(s^2 + 9)} + \frac{B}{s}$$

$$\frac{7s^2 + 18}{s(s^2 + 9)} = \frac{As^2 + B(s^2 + 9)}{s(s^2 + 9)}$$

$$7s^2 + 18 = As^2 + Bs^2 + 9B$$

$$7 = (A+B) \dots \dots \dots (1) \Rightarrow A = 5 \text{ and}$$

$$18 = 9B \dots \dots \dots (2) \Rightarrow B = 18/9 = 2$$

Therefore,

$$F(s) = \frac{7s^2 + 18}{s(s^2 + 9)} = \frac{5s}{(s^2 + 9)} + \frac{2}{s}$$

$$F(t) = \mathcal{L}^{-1}[F(s)] = 2\mathcal{L}^{-1}\frac{1}{s} + 5\mathcal{L}^{-1}\frac{s}{(s^2 + 9)} \dots \text{Entries 1&6}$$

$$\therefore f(t) = 2 + 5 \cos 3t$$

Ex. 19: If $F(s) = \frac{s}{s^2 + 2s + 5}$. Find $f(t)$

$$\text{Sol. } F(s) = \frac{s}{s^2 + 2s + 5} = \frac{s+1-1}{s^2 + 2s + 1 + 4} = \left(\frac{(s+1)-1}{s^2 + 1} + 2^2\right)$$

$$F(t) = \mathcal{L}^{-1}\left[\frac{s+1}{(s+1)^2 + 2^2} - \frac{1}{2} \cdot \frac{2}{(s+1)^2 + 2^2}\right] \text{ entries 7&8}$$

$$F(t) = e^{-t} \cos 2t - \frac{1}{2} e^{-t} \sin 2t$$

Ex. 20: If $F(s) = \frac{s+1}{s^2 + s - 6}$. Find $f(t)$

$$\text{Sol. } F(s) = \frac{s+1}{s^2 + s - 6} = \frac{s+1}{(s-2)(s+3)}$$

$$\frac{s+1}{(s-2)(s+3)} = \frac{A}{s-2} + \frac{B}{s+3} = \frac{A(s+3) + B(s-2)}{(s-2)(s+3)}$$

$$\therefore s + 1 = As + A3 + Bs - 2B$$

$$s + 1 = (A + B)s + 3A - 2B$$

Coefficient of "s" $1 = A + B \dots \dots \dots (1)$ $\therefore A = 3/5$

Coefficient of "s⁰" $1 = 3A - 2B \dots \dots \dots (2)$ $\therefore B = 2/5$

$$\therefore F(s) = \frac{1}{5} \left\{ \frac{3}{s-2} + \frac{2}{s+3} \right\}$$

$$\therefore f(t) = \frac{1}{5} \mathcal{L}^{-1} \left[\frac{3}{s-2} + \frac{2}{s+3} \right] \Rightarrow f(t) = \frac{1}{5} (3e^{2t} + 2e^{-3t})$$

Laplace Transformations of Derivatives and integrals

Suppose that $f(t)$ is continuous for all $t \geq 0$, and has derivative $f'(t)$ which is continuous on every finite interval in the range $t \geq 0$. Then, the L.T. of the derivative $f'(t)$ exists:

If $F(s) = \mathcal{L}[f(t)]$

Then $\mathcal{L}[f'(t)] = sF(s) - f(0)$

Proof: $\mathcal{L}[f'(t)] = \int_0^\infty f'(t) \cdot e^{-st} dt$

Integrating by parts ($\int u dv = uv - \int v du$)

$$dv = f'(t) dt \quad \& \quad u = e^{-st}$$

$$v = f(t) \quad \& \quad du = -s \cdot e^{-st} dt$$

$$\mathcal{L}[f'(t)] = [e^{-st} [f(t)]_0^\infty + s \int_0^\infty e^{-st} f(t) dt]$$

$$\therefore \mathcal{L}[f'(t)] = sF(s) - f(0)$$

For high order derivative:

$$\mathcal{L}[f''(t)] = s^2 F(s) - sF(0) - f'(0)$$

And,

$$\mathcal{L}[f'''(t)] = s^3 F(s) - s^2 F(0) - sf'(0) - f''(0)$$

Ex.21: $F(t) = (\sin t)^2$. Find $F(s)$, if $f(0)=0$

Sol. $F'(t) = 2 \sin t \cdot \cos t = \sin 2t$

$$f'(t) = sF(s) - f(0)$$

$$\mathcal{L}[f'(t)] = \mathcal{L}[\sin 2t] = \frac{2}{s^2 + 4}$$

$$\frac{2}{s^2 + 4} = sF(s) - 0 \quad \text{or} \Rightarrow \quad F(s) = \frac{2}{s(s^2 + 4)} = \mathcal{L}(\sin t)^2$$

Ex.22: let $f(t) = t \cdot \sin wt$. Fond $F(s)$, where $f(0)=0$

Sol. $F'(t) = \sin wt \cdot 1 + w \cdot t \cdot \cos wt \Rightarrow f'(0) = 0$

$$f''(t) = \cos wt \cdot w + [wt(-\sin wt \cdot w) + \cos wt \cdot w]$$

$$f''(t) = 2w \cos wt - w^2 t \sin wt$$

$$\therefore f''(t) = 2w \cos wt - w^2 f(t)$$

$$\mathcal{L}[f''(t)] = s^2 F(s) - sF(0) - f'(0)$$

$$\mathcal{L}[f''(t)] = 2w \mathcal{L}[\cos wt] - w^2 \mathcal{L}[f(t)]$$

$$\therefore 2w \mathcal{L}[\cos wt] - w^2 \mathcal{L}[f(t)] = s^2 F(s) - 0 - 0$$

$$2w \cdot \frac{s}{s^2 + w^2} - w^2 F(s) = s^2 F(s)$$

$$\frac{2ws}{s^2 + w^2} = s^2 F(s) + w^2 F(s) \Rightarrow F(s) = \frac{2ws}{(s^2 + w^2)^2}$$

Ex.23: Find $\mathcal{L}[Y'']$, given that $Y(t) = \sin 2t$

Sol. $Y(t) = \sin 2t \Rightarrow y(0) = 0$

$$Y'(t) = 2 \cos 2t \Rightarrow y'(0) = 2$$

$$Y''(t) = -4 \sin 2t \Rightarrow y''(0) = 0$$

Thus,

$$\mathcal{L}[Y'''] = s^3 \mathcal{L}[y(t)] - s^2 y(0) - s y'(0) - y''(0)$$

$$s^3 \mathcal{L}[\sin 2t] - 0\mathcal{L} - 2s - 0$$

By using table 1 (#5),

$$\mathcal{L}[\sin 2t] = \frac{2}{s^2 + 4}, \text{ for } s > 0$$

So that,

$$\begin{aligned} \mathcal{L}[Y'''] &= \frac{2s^3}{s^2 + 4} - 2s = \frac{2s^3 - 2s(s^2 + 4)}{s^2 + 4} = \frac{-8s}{s^2 + 4} \\ \therefore \mathcal{L}[Y'''] &= -8 \cos 2t \text{ (using table 1 #6)} \end{aligned}$$

Ex.24: solve $Y'' - 3Y' + 2Y = e^{-t}$ using L.T. Given that $y(0) = 1$, $y'(0) = 0$

Sol. Take the L.T. of both sides of the equation to obtain:

$$\mathcal{L}[Y''] - 3\mathcal{L}[Y'] + 2\mathcal{L}[Y] = \mathcal{L}[e^{-t}]$$

Transforming the derivatives, and transforming e^{-t} by means of entry "3" of table 1, we obtain:

$$[s^2Y(s) - y'(0) - sy(0)] - 3[sY(s) - y(0)] + 2Y(s) = \frac{1}{s+1}$$

$$[s^2Y(s) - 0 - s] - 3[sY(s) - 1] + 2Y(s) = \frac{1}{s+1}$$

$$\therefore Y(s)[s^2 - 3s + 2] - s + 3 = \frac{1}{s+1}$$

$$\begin{aligned} Y(s)[s^2 - 3s + 2] &= Y(s) \frac{1}{s+1} + s - 3 = \frac{1 + s(s+1) - 3(s+1)}{s+1} \\ &= \frac{s^2 - 2s - 2}{s+1} \end{aligned}$$

$$\therefore Y(s) = \frac{s^2 - 2s - 2}{(s+1)(s^2 - 3s + 2)} = \frac{s^2 - 2s - 2}{(s+1)(s-2)(s-1)}$$

Using partial fractions,

$$Y(s) = \frac{3}{2} \left(\frac{1}{s-1} \right) - \frac{2}{3} \left(\frac{1}{s-2} \right) + \frac{1}{6} \left(\frac{1}{s+1} \right)$$

Taking the inverse L.T using entry “3” of table 1:

$$Y(t) = \frac{3}{2} e^t - \frac{2}{3} e^{2t} + \frac{1}{6} e^{-t}$$

$$\begin{aligned}
 \text{Hint: } & \frac{s^2 - 2s - 2}{(s+1)(s-1)(s-2)} = \frac{A}{s-1} + \frac{B}{s-2} + \frac{C}{s+1} \\
 & = \frac{A[(s-2)(s+1) + B[(s-1)(s+1)] + C[(s-2)(s-1)]}{(s-1)(s-2)(s-3)} \\
 & = \frac{A[s^2 + s - 2s - 2] + B[s^2 + s - s - 1] + C[s^2 - s - 2s + 2]}{(s-1)(s-2)(s-3)} = \frac{A[s^2 - s - 2] + B[s^2 - 1] + C[s^2 - 3s + 2]}{(s-1)(s-2)(s-3)} \\
 & \frac{s^2 - 2s - 2}{(s+1)(s-1)(s-2)} = \frac{As^2 + As - 2A + Bs^2 - B + Cs^2 - 3Cs + 2C}{(s-1)(s-2)(s-3)} \\
 \text{Coeff. of } s^2 & \quad 1 = A + B + C \dots \dots \dots (1) \Rightarrow A = 3/2 \\
 \text{Coeff. of } s & \quad -2 = -A - 3C \dots \dots \dots (2) \Rightarrow B = -2/3 \\
 \text{Coeff. of } s^0 & \quad -2 = -2A - B + 2C \dots \dots \dots (3) \Rightarrow C = 1/6 \\
 Y(s) & = \frac{\frac{3}{2}}{(s-1)} - \frac{\frac{2}{3}}{(s-2)} + \frac{\frac{1}{6}}{(s+1)}
 \end{aligned}$$

Laplace transform of integration

$$\text{If } F(s) = \mathcal{L}[f(t)]$$

$$\text{then, } \mathcal{L}\left[\int_0^\infty f(t) dt\right] = \int_0^\infty [f(t) dt] \cdot e^{-st} dt$$

$$\text{let } u = f(t) dt \quad dv = e^{-st} dt$$

$$du = f(t) dt \quad v = -\frac{1}{s} e^{-st}$$

$$\mathcal{L}\left[\int_0^t f(t) dt\right] = \left\{ \left[\int_0^t f(t) dt \right] \left[-\frac{1}{s} e^{-st} \right] \right\}_0^\infty - \int -\frac{1}{s} e^{-st} f(t) dt$$

$$= -\frac{1}{s} e^{-st} \int_0^t f(t) dt]_0^\infty + \frac{1}{s} \cdot F(s)$$

Since $e^{-st} \Rightarrow 0$ as $t \Rightarrow \infty$

& $t \Rightarrow 0$, the integral in this term vanishes

$$\therefore \mathcal{L} \left[\int_0^t f(t) dt \right] = \frac{F(s)}{s}$$

Multiplication by power of t

If $F(s) = \mathcal{L}[f(t)]$,

$$\therefore \mathcal{L}[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} F(s), \text{ where } n=1, 2, 3, \dots$$

Proof:

For $n=1$, $F(s) = \mathcal{L} \left[\int_0^\infty f(t) dt \right]$

$$\begin{aligned} \frac{dF}{ds} &= \frac{d}{ds} \int_0^\infty f(t) e^{-st} dt = \int_0^\infty \frac{d}{ds} e^{-st} f(t) dt \\ &= \int_0^\infty -t e^{-st} f(t) dt = \int_0^\infty -e^{-st} [t f(t)] dt = -\mathcal{L}[t f(t)] \end{aligned}$$

Or $\mathcal{L}[t f(t)] = -\frac{dF}{ds} = -F'(s)$

Ex. 25: $f(t) = t \cos 3t$. Find $\mathcal{L}[f(t)]$

Proof: $\mathcal{L}[\cos 3t] = \frac{s}{s^2 + 9}$

$$\mathcal{L}[t \cos 3t] = (-1) \frac{d}{ds} \cdot \frac{s}{s^2 + 9}$$

$$= \frac{(s^2+9).1-s.2s}{(s^2+9)^2} \cdot (-1) = \frac{s^2-9}{(s^2+9)^2}$$

Ex.26: Given $\int_0^t t \cos 2t \ dt$. find \mathcal{L} of the function

Sol. $\mathcal{L}[t \cos 2t] = \frac{s^2-4}{(s^2+4)^2}$

$$\therefore \mathcal{L}\left[\int_0^t t \cos 2t\right] = \frac{1}{s} \cdot F(s) = \frac{1}{s} \cdot \frac{s^2-4}{(s^2+4)^2}$$

Ex.27: Given $F(s) = \frac{1}{s^2(s^2+w^2)}$. Find $f(t)$ 1/w^2(1-coswt)

Sol. We have $\mathcal{L}^{-1}\left[\frac{1}{s} \cdot \left(\frac{1}{s^2+w^2}\right)\right] = \frac{1}{w} \int_0^t \sin wt \ dt =$

Applying the integration theorem once more, we obtain the desired answer:

$$\mathcal{L}^{-1}\left[\frac{1}{s^2} \left(\frac{1}{s^2+w^2}\right)\right] = \frac{1}{w} \int_0^t (1 - \cos wt) \ dt = \frac{1}{w^2} \left(t - \frac{\sin wt}{w}\right)$$

Note: you can also resolve it by partial fraction method ...etc

