

Al-Mustaqbal University / College of Engineering & Technology

Computer Techniques Department

Class three

Subject (Real time system design) / Code (UOMU0202056)

Lecturer (Dr. Hussein AbdulAmeer Abbas)

1st term – Lecture 12 & 8156-8155 PID

Real Time System

Third Level

8155/8156 Multipurpose Programmable Devices

Dr. Hussein AbdulAlmeer Alkhamees

Hussein.Alkhamees@uomus.edu.iq

Goals

Upon completing this lecture, the student should be able to:

- 1- Identify the concepts behind programmable devices
- 2- Utilize the programmable devices into the RT designs.

Al-Mustaqbal University / College of Engineering & Technology

Computer Techniques Department

Class three

Subject (Real time system design) / Code (UOMU0202056)

Lecturer (Dr. Hussein AbdulAmeer Abbas)

1st term – Lecture 12 & 8156-8155 PID

Real Time System

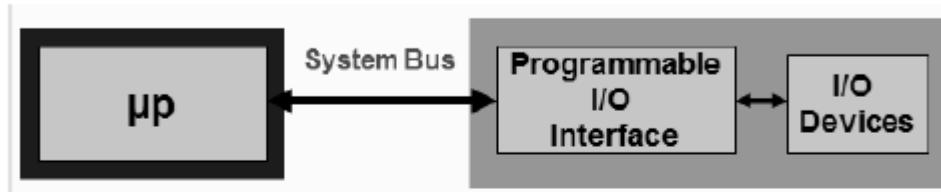
Third Level

8155/8156 Multipurpose Programmable Devices

Dr. Hussein AbdulAlmeer Alkhamees

Hussein.Alkhamees@uomus.edu.iq

Goals

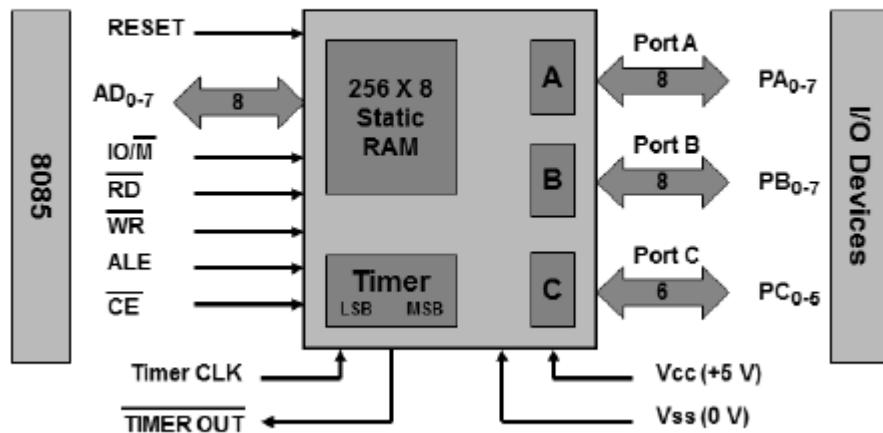

Upon completing this lecture, the student should be able to:

- 1- Identify the concepts behind programmable devices
- 2- Utilize the programmable devices into the RT designs.

Programmable Interface Devices

- Used to interface an I/O device to the microprocessor.
- Can be programmed/configured to perform various I/O functions by writing software instructions.

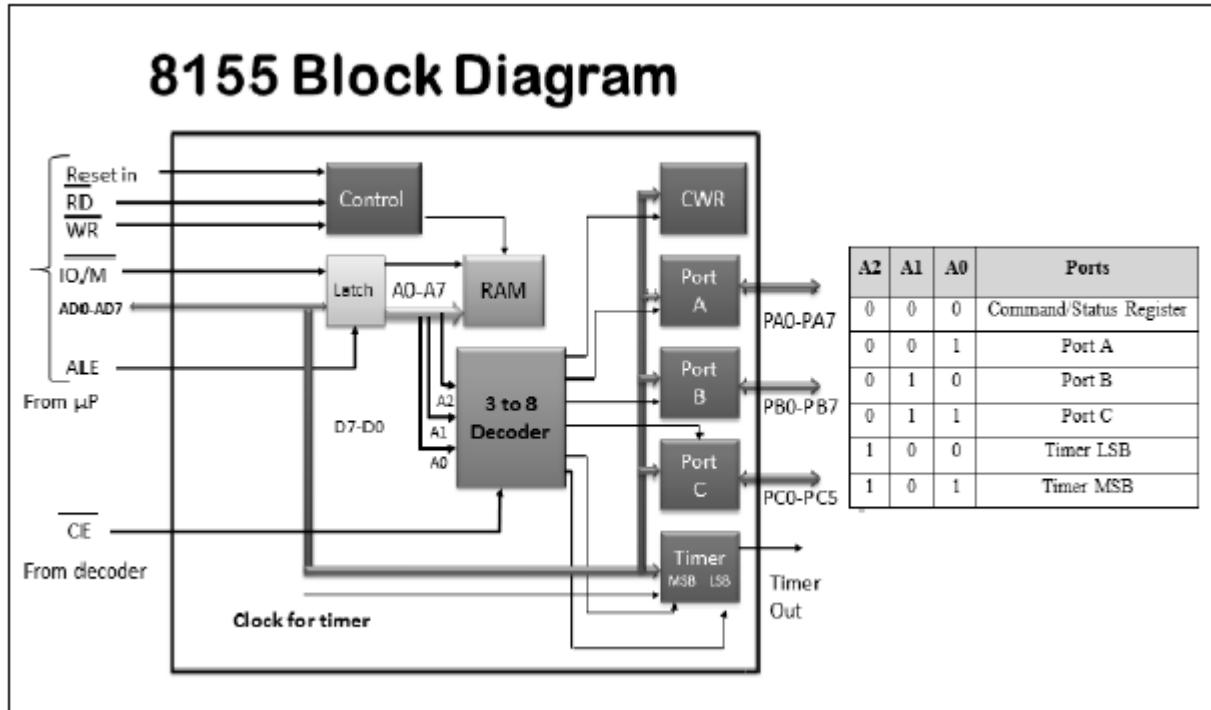
8155/8156 – A Multipurpose Programmable Interface


Its programmable interface device used to interface I/O device to μ P, its multifunction device, contain RAM, I/O ports, and timer.

- Designed to be compatible with 8085.
- It includes:
 - 256 bytes of Read/Write memory.
 - Three I/O ports (programmable I/O):
 - Port A (8-bit).
 - Port B (8-bit).
 - Port C (6-bit).
 - A 14-bit timer.

PC3	Vcc
PC4	PC2
TIMER IN	PC1
RESET	PC0
PC5	PB7
TIMEROUT	PB6
IO/M	PB5
CE (CE IN 8156)	PB4
RD	PB3
WR	PB2
ALE	PB1
AD0	PB0
AD1	PA7
AD2	PA6
AD3	PA5
AD4	PA4
AD5	PA3
AD6	PA2
AD7	PA1
	PA0
	Vss

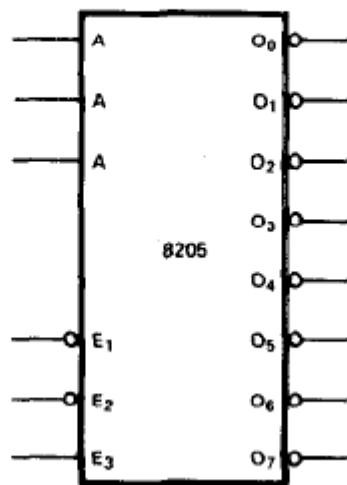
BLOCK DIAGRAM - 8155

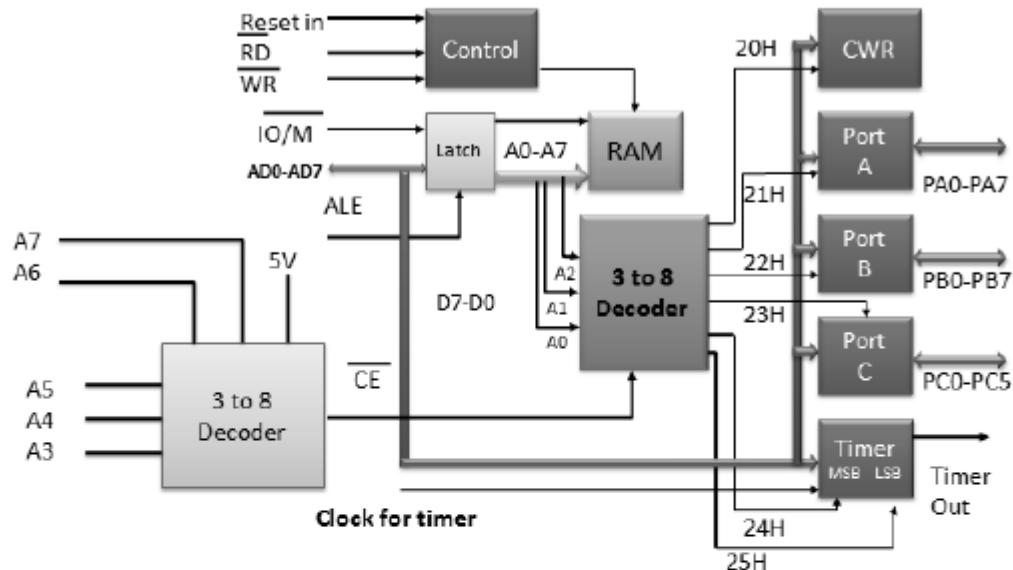


The 8155/8156 is a device with two sections:

- The first is 256 byte static memory (RAM).
- The second is programmable I/O ports.

Functionally the two sections are used as two independent chips, the I/O section includes two 8 bit parallel I/O ports (A, B), and one 6 bit port (C), and bit timer, all ports can be simply configured as I/O ports.


- 8155 block diagram shows 5 control signals, all except CE are input signals directly generated by the processor; the (CE) is input from decoder.
 - CE: chip enable, connected to the decoder.
 - IO/M: specify whether the memory section is selected, or I/O section (including timer) is selected.
 - ALE: address latch enable.
 - RD and WR
 - RESET: connect to the RESET out of processor used to reset the chip and initializes I/O ports as input.
- In 8155 we have control register, 3 I/O ports, and 2 registers for timer, so we need 3 address lines to decode these registers.



How to Calculate Address of control register and I/O Ports of 8155?

By using 3 to 8 decoder 8205 which have 3 enables.

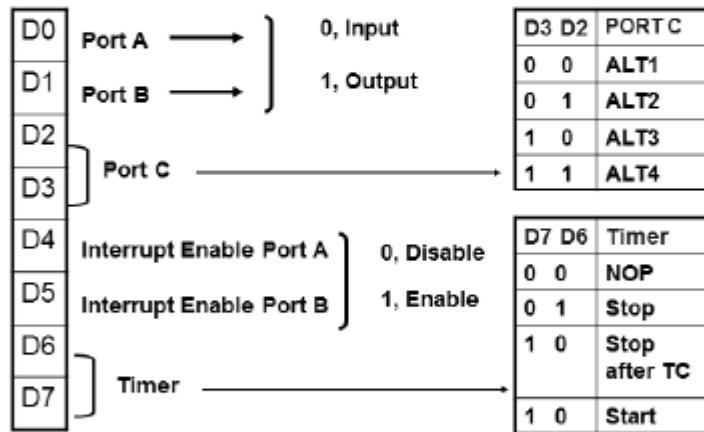
Why and How?

Ex: design (draw) and determine the address of the control/status, I/O ports and timer register of the 8155 if the output of decoder O2?

Application design with 8155:

- Interfacing 8155 with 8085.
- Programming 8155.

Ex: design a full system contains microprocessor and 8155 and I/O device with its connections and shows how can any output of the decoder active the interfacing proses by using 8205?

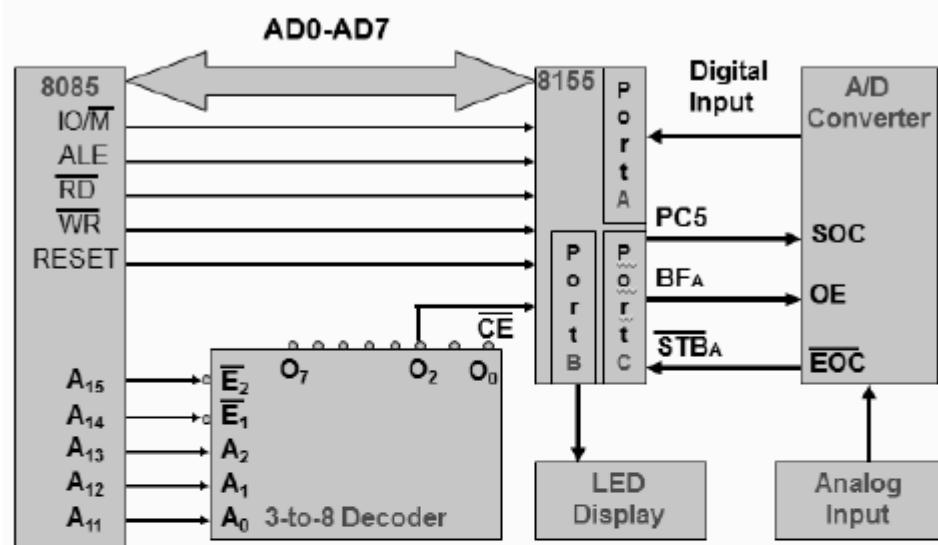


- Timer registers of 8155.
- Instruction/Command word for 8155.
- Commands for 8155 are stored in an 8-bit Control Register inside 8155.

Control word for 8155:-

- A command/instruction for 8155 is also called control word.
- This control word is written to control register of 8155.
- Control word of 8155 is of 8-bits.

Control word (command reg) format



- 00: No effect
- 01: Stop if running else no effect
- 10: Stop after terminal count (TC) if running, else no effect
- 11: Start if not running.

I/O functions of Port C

Ex: Design an interfacing circuit to read data from an A/D converter using the 8155A in the peripheral mapped I/O.

Chip Selection

A7 A6 A5 A4 A3
0 0 0 1 0

A7	A6	A5	A4	A3	Port
0	0	0	1	0	Control/Status Register
					= 10H
0	0	1			Port A
					= 11H
0	1	0			Port B
					= 12H
0	1	1			Port C
					= 13H
1	0	0			LSB Timer
					= 14H
1	0	1			MSB Timer
					= 15H