

Differentiation

Definition of derivative:

The derivative is the rate of change of a function with respect to its variable, or the slope of the tangent line to the curve at a given point.

المشتقة هي معدل تغير دالة بالنسبة لمتغيرها، أو هي ميل المماس للمنحنى عند نقطة معينة.

DEFINITION The **derivative** of the function $f(x)$ with respect to the variable x is the function f' whose value at x is

$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h},$$

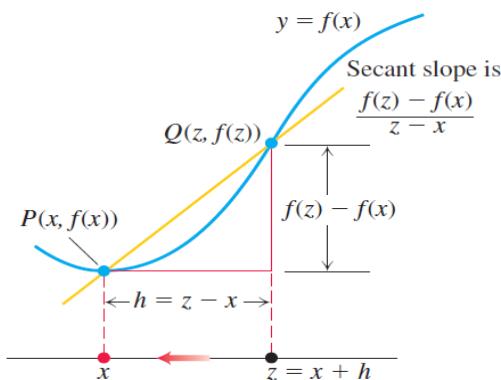
provided the limit exists.

صيغة بديلة:

Alternative Formula for the Derivative

$$f'(x) = \lim_{z \rightarrow x} \frac{f(z) - f(x)}{z - x}$$

If we write $z = x + h$, then $h = z - x$ and h approaches 0 if and only if z approaches x .
تقرب h من 0 إذا وفقط إذا اقتربت z من x .



Example 1: Find the slope of the curve $y = 1/x$ at any point $x = a \neq 0$. What is the slope at the point $x = -1$?

Solution:

$$\begin{aligned}\lim_{h \rightarrow 0} \frac{f(a + h) - f(a)}{h} &= \lim_{h \rightarrow 0} \frac{\frac{1}{a + h} - \frac{1}{a}}{h} = \lim_{h \rightarrow 0} \frac{1}{h} \frac{a - (a + h)}{a(a + h)} \\ &= \lim_{h \rightarrow 0} \frac{-h}{ha(a + h)} = \lim_{h \rightarrow 0} \frac{-1}{a(a + h)} = -\frac{1}{a^2}.\end{aligned}$$

Example 2 : Applying the Definition, differentiate $f(x) = \frac{x}{x-1}$

Solution We use the definition of derivative, which requires us to calculate $f(x + h)$ and then subtract $f(x)$ to obtain the numerator in the difference quotient. We have

$$f(x) = \frac{x}{x-1} \quad \text{and} \quad f(x + h) = \frac{(x + h)}{(x + h) - 1}, \text{ so}$$

$$\begin{aligned}f'(x) &= \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} \\ &= \lim_{h \rightarrow 0} \frac{\frac{x + h}{x + h - 1} - \frac{x}{x - 1}}{h} \\ &= \lim_{h \rightarrow 0} \frac{1}{h} \cdot \frac{(x + h)(x - 1) - x(x + h - 1)}{(x + h - 1)(x - 1)} \\ &= \lim_{h \rightarrow 0} \frac{1}{h} \cdot \frac{-h}{(x + h - 1)(x - 1)} \\ &= \lim_{h \rightarrow 0} \frac{-1}{(x + h - 1)(x - 1)} = \frac{-1}{(x - 1)^2}.\end{aligned}$$

Example 3:

(a) Find the derivative of $f(x) = \sqrt{x}$ for $x > 0$.
(b) Find the tangent line to the curve $y = \sqrt{x}$ at $x = 4$.

Solution

(a) We use the alternative formula to calculate f' :

$$\begin{aligned}f'(x) &= \lim_{z \rightarrow x} \frac{f(z) - f(x)}{z - x} \\&= \lim_{z \rightarrow x} \frac{\sqrt{z} - \sqrt{x}}{z - x} \\&= \lim_{z \rightarrow x} \frac{\sqrt{z} - \sqrt{x}}{(\sqrt{z} - \sqrt{x})(\sqrt{z} + \sqrt{x})} \quad \frac{1}{a^2 - b^2} = \frac{1}{(a - b)(a + b)} \\&= \lim_{z \rightarrow x} \frac{1}{\sqrt{z} + \sqrt{x}} = \frac{1}{2\sqrt{x}}. \quad \text{Cancel and evaluate.}\end{aligned}$$

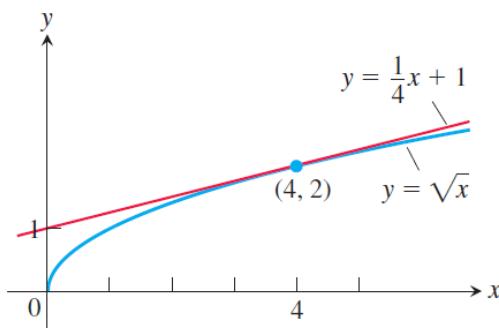
(b) The slope of the curve at $x = 4$ is

$$f'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}.$$

The tangent is the line through the point $(4, 2)$ with slope $1/4$ (Figure 3.5):

$$y = 2 + \frac{1}{4}(x - 4)$$

$$y = \frac{1}{4}x + 1.$$



Differentiation Rules:

If $f(x)$ or y is differentiable function of X and C is constant then:

$$1- \frac{d}{dx} (c) = 0$$

$$2- \frac{d}{dx} (c f(x)) = c \frac{d f(x)}{dx}$$

$$3- \frac{d}{dx} (f(x) \mp g(x)) = \frac{d f(x)}{dx} \mp \frac{d g(x)}{dx} = f'(x) \mp g'(x)$$

$$4- \frac{d}{dx} (f(x) g(x)) = f(x) g'(x) + g(x) f'(x)$$

$$5- \frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$$

$$6- \frac{d}{dx} (x^n) = n x^{n-1}$$

$$7- \frac{d}{dx} (f(x))^n = n (f(x))^{n-1} \cdot f'(x)$$

Example 4:

Differentiate the following powers of x :

(a) x^3 (b) $x^{2/3}$ (c) $x^{\sqrt{2}}$ (d) $\frac{1}{x^4}$

Solution

$$(a) \frac{d}{dx} (x^3) = 3x^{3-1} = 3x^2$$

$$(b) \frac{d}{dx} (x^{2/3}) = \frac{2}{3}x^{(2/3)-1} = \frac{2}{3}x^{-1/3}$$

$$(c) \frac{d}{dx} (x^{\sqrt{2}}) = \sqrt{2}x^{\sqrt{2}-1}$$

$$(d) \frac{d}{dx} \left(\frac{1}{x^4} \right) = \frac{d}{dx} (x^{-4}) = -4x^{-4-1} = -4x^{-5} = -\frac{4}{x^5}$$

Example 5: Find the derivative of the functions :

1-

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx}x^3 + \frac{d}{dx}\left(\frac{4}{3}x^2\right) - \frac{d}{dx}(5x) + \frac{d}{dx}(1) \\ &= 3x^2 + \frac{4}{3} \cdot 2x - 5 + 0 = 3x^2 + \frac{8}{3}x - 5 \end{aligned}$$

2- $f(x) = x^7(x^5 + x^2)$

$$f'(x) = x^7(5x^4 + 2x) + 7x^6(x^5 + x^2)$$

3- $f(x) = \frac{5}{x}$, $f(x) = 5x^{-1}$, $f'(x) = -5x^{-2} = -\frac{5}{x^2}$

4- $f(x) = \frac{3x^2 - 5x}{7}$, $f'(x) = \frac{1}{7}(6x - 5)$

Second- and Higher-Order Derivatives

If $y = f(x)$ is a differentiable function, then its derivative $f'(x)$ is also a function. If f' is also differentiable, then we can differentiate f' to get a new function of x denoted by f'' . So $f'' = (f')'$. The function f'' is called the **second derivative** of f because it is the derivative of the first derivative.

إذا كانت الدالة $y = f(x)$ قابلة للاشتاقاق، فإن مشتقتها $f'(x)$ هي أيضاً دالة. وإذا كانت f' قابلة للاشتاقاق أيضاً، فيمكننا اشتقاق f'' للحصول على دالة جديدة f'' نرمز لها بـ $f'' = (f')'$. إذن f'' تسمى الدالة f'' بالمشتقة الثانية للدالة f لأنها مشتقة المشتقة الأولى.

It is written in several ways:

$$f''(x) = \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{dy'}{dx} = y'' = D^2(f)(x) = D_x^2 f(x).$$

If $y = x^6$, then $y' = 6x^5$ and we have

$$y'' = \frac{dy'}{dx} = \frac{d}{dx} (6x^5) = 30x^4.$$

If y'' is differentiable, its derivative, $y''' = dy''/dx = d^3y/dx^3$, is the **third derivative** of y with respect to x .

$$y^{(n)} = \frac{d}{dx} y^{(n-1)} = \frac{d^n y}{dx^n} = D^n y$$

The names continue as you imagine, with

denoting the **n th derivative** of y with respect to x for any positive integer n .

Example 6:

The first four derivatives of $y = x^3 - 3x^2 + 2$ are

$$\text{First derivative: } y' = 3x^2 - 6x$$

$$\text{Second derivative: } y'' = 6x - 6$$

$$\text{Third derivative: } y''' = 6$$

$$\text{Fourth derivative: } y^{(4)} = 0.$$

Derivatives of Trigonometric Functions

Because $\sin x$ and $\cos x$ are differentiable functions of x , the related functions

$$\tan x = \frac{\sin x}{\cos x}, \quad \cot x = \frac{\cos x}{\sin x}, \quad \sec x = \frac{1}{\cos x}, \quad \text{and} \quad \csc x = \frac{1}{\sin x}$$

$$1- \frac{d}{dx} (\sin u) = \cos u \cdot \frac{du}{dx}$$

$$2- \frac{d}{dx} (\cos u) = -\sin u \cdot \frac{du}{dx}$$

$$3- \frac{d}{dx} (\tan u) = \sec^2 u \cdot \frac{du}{dx}$$

$$4- \frac{d}{dx} (\cot u) = -\csc^2 u \cdot \frac{du}{dx}$$

$$5- \frac{d}{dx} (\sec u) = \sec u \tan u \cdot \frac{du}{dx}$$

$$6- \frac{d}{dx} (\csc u) = -\csc u \cot u \cdot \frac{du}{dx}$$

Example 7 :

a) $y = x^2 \sin x$:
$$\begin{aligned} \frac{dy}{dx} &= x^2 \frac{d}{dx}(\sin x) + 2x \sin x \\ &= x^2 \cos x + 2x \sin x. \end{aligned}$$

b) $y = \frac{\cos x}{1 - \sin x}$:

$$\begin{aligned} \frac{dy}{dx} &= \frac{(1 - \sin x) \frac{d}{dx}(\cos x) - \cos x \frac{d}{dx}(1 - \sin x)}{(1 - \sin x)^2} && \text{Quotient Rule} \\ &= \frac{(1 - \sin x)(-\sin x) - \cos x(0 - \cos x)}{(1 - \sin x)^2} \\ &= \frac{1 - \sin x}{(1 - \sin x)^2} && \sin^2 x + \cos^2 x = 1 \\ &= \frac{1}{1 - \sin x} \end{aligned}$$

c) Find y'' if $y = \sec x$.

$$\begin{aligned} y &= \sec x \\ y' &= \sec x \tan x \\ y'' &= \frac{d}{dx}(\sec x \tan x) \\ &= \sec x \frac{d}{dx}(\tan x) + \tan x \frac{d}{dx}(\sec x) \\ &= \sec x (\sec^2 x) + \tan x (\sec x \tan x) \\ &= \sec^3 x + \sec x \tan^2 x \end{aligned}$$

d) $y = \sin(x^5 - x)$

$$y' = [\cos(x^5 - x)] \cdot (5x^4 - 1)$$

e) $y = \cos\left(\frac{x}{x+2}\right)$

$$y' = -\sin\left(\frac{x}{x+2}\right) \left(\frac{(x+2)-x}{(x+2)^2}\right) = -\left(\frac{2}{(x+2)^2}\right) \sin\left(\frac{x}{x+2}\right)$$

f) $y = \sin^5 x = (\sin x)^5$

$$y' = 5(\sin x)^4 \cdot \cos x = 5 \cos x \sin^4 x$$

EXERCISES:

Q1/ Using the definition, calculate the derivatives of the functions. Then find the values of the derivatives as specified.

1. $f(x) = 4 - x^2$; $f'(-3), f'(0)$

2. $f(x) = \frac{1-x}{2x}$; $f'(-1), f'(1)$

Q2/ Find the derivatives of the functions

1. $y = (x-1)(x+2)$

2. $y = \frac{5x+1}{2\sqrt{x}}$

3. $y = \frac{3}{x} + 5 \sin x$

4. $y = \frac{x+3 \cot x}{5-2 \csc x}$

5. $y = \tan(5 - \sin 2x)$

6. $y = \tan^5 x^4$

Q3/

1. Find y'' if $y = \frac{4x^3}{3} - x$

2. Find $\frac{d^4y}{dx^4}$ if $y = x^6 - 2x^4 + 3 \cos x$