



Al-Mustaql University / College of Engineering & Technology

Computer Techniques Department

Class three

Subject (Real time system design) / Code (UOMU0202056)

Lecturer (Dr. Hussein AbdulAmeer Abbas)

1<sup>st</sup> term – Lecture 7 & Types of ADC

---

## Real Time System

### Third Level

## Types of ADC

Dr. Hussein AbdulAlmeer Alkhamees

[Hussein.Alkhamees@uomus.edu.iq](mailto:Hussein.Alkhamees@uomus.edu.iq)

#### Goals

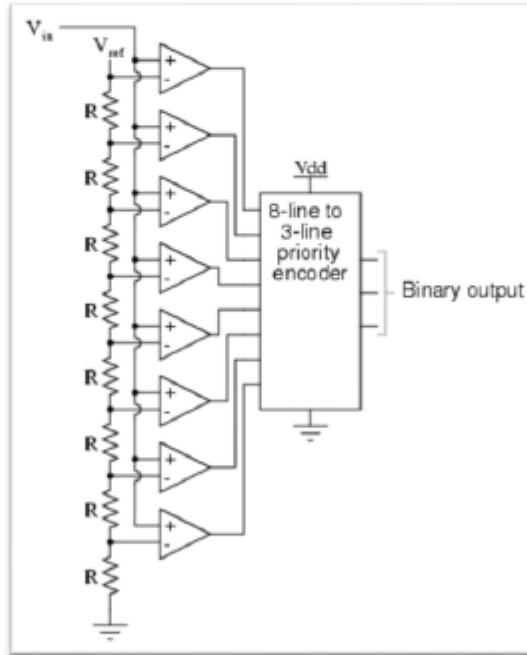
Upon completing this lecture, the student should be able to:

- 1- Identify the different types of A/Ds and their theory of operation
- 2- Design A/D circuits that meet the different resolution, speed requirements.



### Types of A/D Converters

- Flash ADC
- Delta-Sigma ADC
- Dual Slope (integrating) ADC
- Successive Approximation ADC


#### 1. Flash A/D Converter

##### **Fundamental Components**

**Resistors** use the resistors to form a ladder voltage divider, which divides the reference voltage into equal intervals.

**Comparators** Consists of a series of comparators, which comparing the input signal to a unique reference voltage.

**Priority encoder** the comparator outputs connect to the inputs of a priority encoder circuit, which produces a binary output.



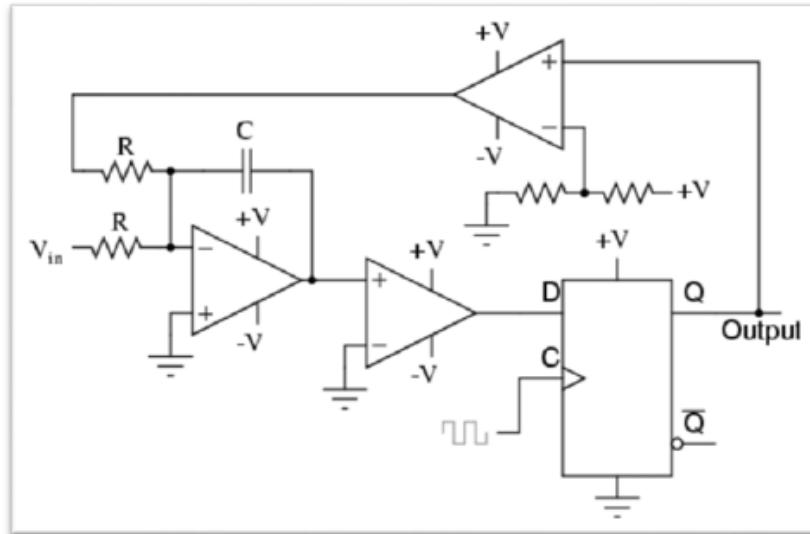
##### **How does it work?**

- Uses the comparators to determine in which the input voltage  $V_{in}$  is exceed or not the  $V_{ref}$ .
- When the analog input voltage exceeds the reference voltage at each comparator, the comparator outputs will sequentially saturate to a high state.
- The priority encoder generates a binary number based on the highest-order active input, ignoring all other active inputs.



## **Advantages and Disadvantages**

- Simplest in terms of operational theory, most efficient in terms of speed, very fast
- Lower resolution, Expensive, for each additional output bit, the number of comparators is increase.


## 2. Sigma Delta ADC

## Main Components

- Resistors
- Integrator
- Capacitor
- Comparators
- Control Logic

To see live demo, go to:

<http://www.analog.com/en/design-center/interactive-design-tools/sigma-delta-adc-tutorial.html>



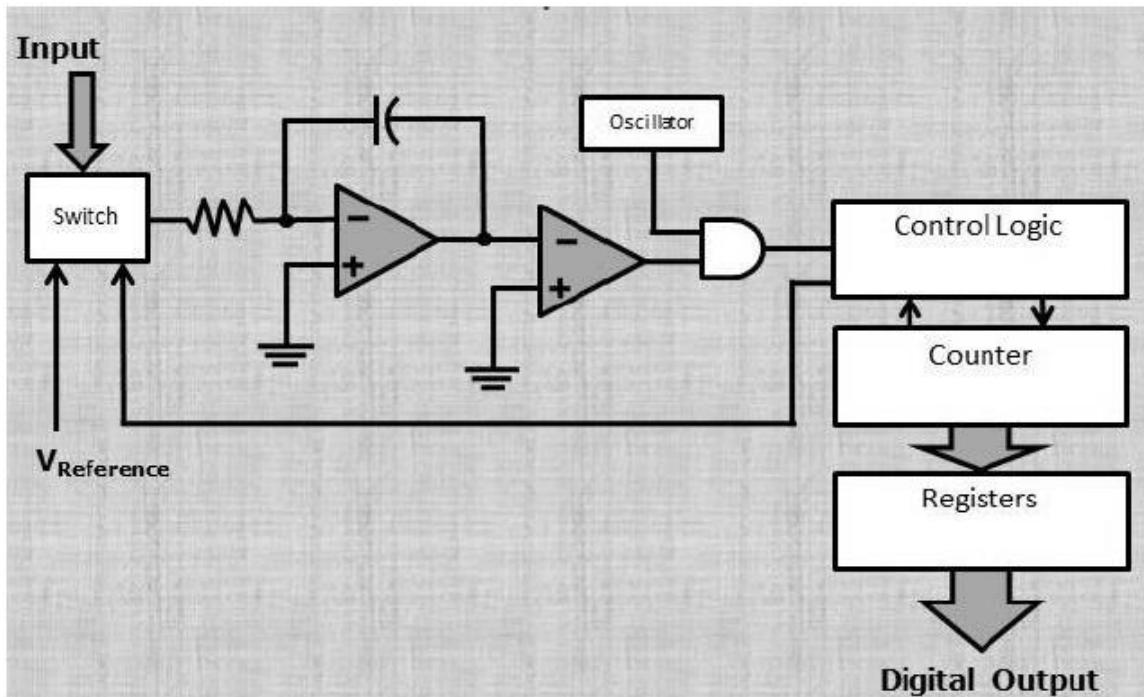


### How does it work?

- Input is over sampled, and goes to integrator.
- The integration is then compared to ground.
- Iterates and produces a serial bit stream
- Output is a serial bit stream with # of 1's proportional to  $V_{in}$

### Advantages and Disadvantages

- High resolution, No need for precision components external.
- Slow due to oversampling.


### 3. Dual Slope Converter

#### Fundamental components

- Integrator
- Electronically Controlled Switches
- Counter
- Clock
- Control Logic
- Comparator

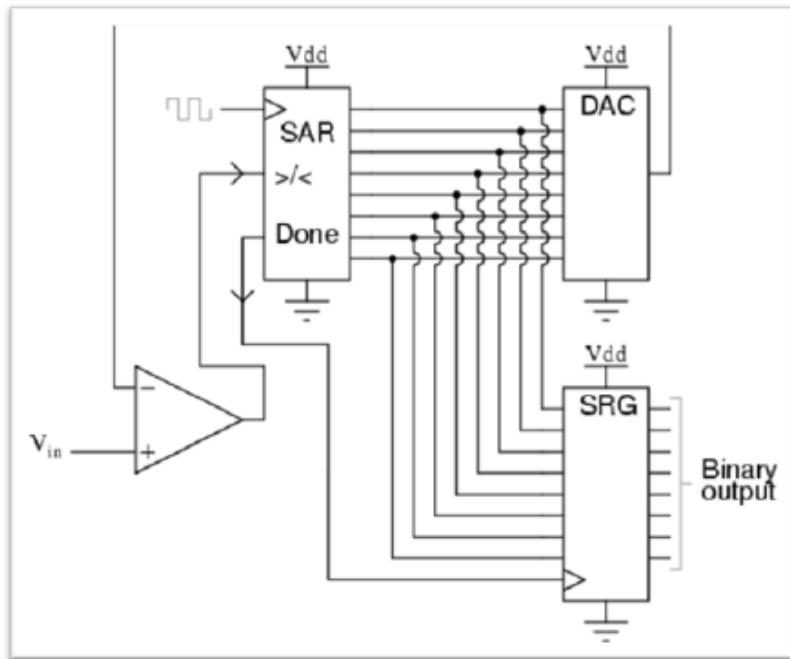
#### In details:

Input voltage  $V_{IN}$  is first summed with the output of a feedback DAC. An integrator then adds the output of this summing node to a value it has stored from the previous integration step. A comparator outputs a logic 1 if the integrator output is greater than or equal to zero volts and a logic 0 otherwise. A 1-bit DAC feeds the output of the comparator back to the summing node:  $+V_{REF}$  for logic 1 and  $-V_{REF}$  for logic 0. This feedback tries to keep the integrator output at zero by making the ones and zeros output of the comparator equal to the analog input.



**The Dual Slope ADC functions in this manner:**

- When an analog value is applied, the capacitor begins to charge in a linear manner and the oscillator passes to the counter.
- The counter continues to count until it reaches a predetermined value. Once this value is reached the count stops and the counter is reset. The control logic switches the input to the first comparator to a reference voltage, providing a discharge path for the capacitor.
- As the capacitor discharges the counter counts.
- When the capacitor voltage reaches the reference voltage the count stops and the value is stored in the register.




### **Advantages and Disadvantages**

- Conversion result is insensitive to errors in the component values, High Accuracy.
- Slow, Accuracy is dependent on the use of precision external components, Cost.

### **4. Successive Approximation ADC**

- Much faster than the Dual Slope.
- A comparator and a DAC are used in the process.
- A Successive Approximation Register (SAR) is added to the circuit
- Instead of counting up in binary sequence, this register counts by trying all values of bits starting with the MSB and finishing at the LSB.
- The register monitors the comparators output to see if the binary count is greater or less than the analog signal input and adjusts the bits accordingly.



### Advantages and Disadvantages

- Capable of high speed and reliable, medium accuracy compared to other ADC types, Good tradeoff between speed and cost.
- Higher resolution successive approximation ADC's will be slower.

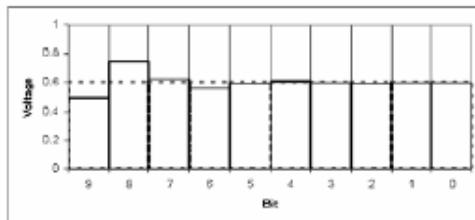
### Example

10 bit ADC,  $V_{in} = 0.6$  volts (from analog device),  $V_{ref} = 1$  volts, Find the digital value of  $V_{in}$ ?

**Solu:**

- MSB (bit 9)
  - Divided  $V_{ref}$  by 2
  - Compare  $V_{ref}/2$  with  $V_{in}$
  - If  $V_{in}$  is greater than  $V_{ref}/2$ , turn MSB on (1)
  - If  $V_{in}$  is less than  $V_{ref}/2$ , turn MSB off (0)
  - $V_{in} = 0.6V$  and  $V=0.5$
  - Since  $V_{in} > V$ , MSB = 1 (on)




- Calculate the state of MSB-3 (bit 6)
  - Go to the last bit that caused it to be turned on (In this case MSB-1) and add it to  $V_{ref}/16$ , and compare it to  $V_{in}$
  - Compare  $V_{in}$  to  $V = 0.5 + V_{ref}/16 = 0.5625$
  - Since  $0.6 > 0.5625$ , MSB-3=1 (turned on)

| MSB | MSB-1 | MSB-2 | MSB-3 | ... |  |  |  |  |  |  |
|-----|-------|-------|-------|-----|--|--|--|--|--|--|
| 1   | 0     | 0     | 1     |     |  |  |  |  |  |  |

- This process continues for all the remaining bits.
- Digital Results:

| MSB | MSB-1 | MSB-2 | MSB-3 | ... |   |   |   |   | LSB |
|-----|-------|-------|-------|-----|---|---|---|---|-----|
| 1   | 0     | 0     | 1     | 1   | 0 | 0 | 1 | 1 | 0   |

• Results:  $\frac{1}{2} + \frac{1}{16} + \frac{1}{32} + \frac{1}{256} + \frac{1}{512} = .599609375 \text{ V}$



### ADC Specifications:

- Conversion time
- Resolution
- Accuracy
- Linearity
- Missing code

ADC Errors due to Noise and Aliasing.



**ADC Errors due to Noise and Aliasing.**

**How to choose the ADC according to the resolution?**

Two ways for find the resolution needed in ADC, first way is to find the **dynamic range** of input signal and to choose the number of bits based on this.

$N \geq \ln(V_{max}/V_{noise})$  --- dynamic range (stage) (sensor)

Another way to choose the number of bits is based on the **resolution required** in input signal.

$N \geq \ln(S_{max}/S_{noise})$  --- required resolutions (stage before ADC) (transducer)

**Example**

A transducer is to be used to find the temperature over a range of 0 to 100 C. we are required to read and display the temperature to a resolution of +/- 1 C. the transducer produces a voltage from 0 to 3v over this temperature range with +/-3mv noise. Specify the number of bits in ADC: a) Based on dynamic range. b) Based on required resolutions.