

Almustaqbal University
Engineering And Technical Engineering
Computer Techniques Engineering Department
Information Theory Laboratory
Class :- 4th

Lectuer 3
Entropy Rate

By
Eng. Ali Adnan

2025-2026

Experiment No. 1 “ Entropy Rate ”

Entropy rate is a measure of the **amount of information produced by a source per unit time**.

It shows how fast the source generates information and combines both **the source entropy** and **the average event duration**.

It is given by:-

$$H_r = \frac{H(X)}{T_{avg}}$$

$$H(X) = \sum P_i \log_2 P_i$$

where:-

- H_r : Entropy Rate.
- $H(X)$: Source entropy (bits/symbol).
- T_{avg} : Average time per event.

Experiment No. 1 “ Entropy Rate ”

Objective :-

The purpose of this experiment is to calculate the entropy rate (H_r) of an information source, which represents the amount of information produced per unit time.

This is done by finding the source entropy $H(X)$ and the average event time T_{avg} , and then computing the entropy rate

Procedure:-

- Input the probabilities of all source events: $px = [0.25 \ 0.1 \ 0.15 \ 0.5];$
- Input the time period of each event: $tt = [3 \ 4 \ 5 \ 4];$
- Calculate the **source entropy**: $Hx = -\sum(px .* \log2(px));$
- Calculate the average time of events: $Tavg = \sum(px .* tt);$
- Compute the entropy rate: $Hr = Hx / Tavg;$

Experiment No. 1 “ Entropy Rate ”

MATLAB code

```
px = [0.25 0.1 0.15 0.5]
tt = [3 4 5 4]
hx = -sum(px .* log2(px))
tx = sum(tt .* px)
Hr = hx / tx
```

Result

px = 0.25 0.1 0.15 0.5

tt = 3 4 5 4

hx = 1.7427

tx = 3.9000

Hr = 0.4469