

Al-Mustaql university
Engineering technical college
Department of Building
&Construction Engineering

Mathematics

First class

Lecture no.3

Assist. Lecture

Alaa Hussein AbdUlameer

lecture 6-3

Dfferentiation

الدالة

$$\Delta x = x_2 - x_1$$

$$\Delta y = y_2 - y_1$$

$$x_2 = \Delta x + x_1$$

$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{y_2 - y_1}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

قانون طبقات

Ex(1):

let $f(x) = x^2$ find $\frac{dy}{dx}$

Sol/

$$\frac{dy}{dx} = \lim_{\Delta x \rightarrow 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$

$$\lim_{\Delta x \rightarrow 0} \frac{(x+\Delta x)^2 - x^2}{\Delta x}$$

$$\lim_{\Delta x \rightarrow 0} \frac{x^2 + 2x\Delta x + \Delta x^2 - x^2}{\Delta x}$$

$$\lim_{\Delta x \rightarrow 0} \frac{2x\Delta x + \Delta x^2}{\Delta x}$$

$$\lim_{\Delta x \rightarrow 0} \frac{\Delta x(2x + \Delta x)}{\Delta x}$$

$$\lim_{\Delta x \rightarrow 0} \frac{2x + \Delta x}{\Delta x}$$

$$2x + 0$$

$$\frac{dy}{dx} = 2x$$

$$Ex(2): f(x) = \sqrt{x}$$

$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\lim_{\Delta x \rightarrow 0} \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x}$$

$$\lim_{\Delta x \rightarrow 0} \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x} * \frac{\sqrt{x + \Delta x} + \sqrt{x}}{\sqrt{x + \Delta x} + \sqrt{x}}$$

$$\lim_{\Delta x \rightarrow 0} \frac{x + \Delta x - x}{\Delta x \sqrt{x + \Delta x} - \sqrt{x}}$$

$$\lim_{\Delta x \rightarrow 0} \frac{1}{\sqrt{x + \Delta x} - \sqrt{x}} \Rightarrow \frac{1}{2\sqrt{x}}$$

Ex(3): If $f(x) = \sqrt{2x+1}$ what is the slope of the line tangent when $x=4$?

Sol/

$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\lim_{\Delta x \rightarrow 0} \frac{\sqrt{2(x + \Delta x) + 1} - \sqrt{2x + 1}}{\Delta x}$$

$$\lim_{\Delta x \rightarrow 0} \frac{\sqrt{2(x + \Delta x) + 1} - \sqrt{2x + 1}}{\Delta x} * \frac{\sqrt{2(x + \Delta x) + 1} + \sqrt{2x + 1}}{\sqrt{2(x + \Delta x) + 1} + \sqrt{2x + 1}}$$

Line
ideal

$$\lim_{\Delta x \rightarrow 0} \frac{(2x + 2\Delta x + 1) - (2x + 1)}{\Delta x (\sqrt{2(x + \Delta x) + 1} + \sqrt{2x + 1})}$$

$$\lim_{\Delta x \rightarrow 0} \frac{2x + 2\Delta x + 1 - 2x - 1}{\Delta x (\sqrt{2x + 2\Delta x + 1} + \sqrt{2x + 1})}$$

$$\lim_{\Delta x \rightarrow 0} \frac{2}{\sqrt{2x + 2\Delta x + 1} + \sqrt{2x + 1}}$$

$$\lim_{\Delta x \rightarrow 0} \frac{2}{\sqrt{2x + 1} + \sqrt{2x + 1}} = \frac{2}{2\sqrt{2x + 1}}$$

$$f'(x) = \frac{1}{\sqrt{2x + 1}} \Rightarrow f'(x) = \frac{1}{\sqrt{2(2) + 1}}$$

$$= \frac{1}{\sqrt{5}}$$

H.W

$$1 - \text{let } f(x) = 1 - x^2$$

$$2 - \text{let } f(x) = 12 + 5x$$

Formal derivatives:

$$1 - \frac{d(u \cdot v)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$

$$2 - \frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v du - u dv}{v^2}$$

$$3 - \frac{d}{dx} (u + v) = \frac{du}{dx} + \frac{dv}{dx}$$

$$4 - \frac{d}{dx} (u^n) = n u^{n-1} \frac{du}{dx}$$

$$5 - \frac{d}{dx} (c) = 0 \quad \therefore c: \text{constant}$$

$$\text{Ex: } y = x^2 + \frac{1}{x^2}, \quad x \neq 0$$

$$y' = ?$$

$$\text{Sol/ } y = x^2 + x^{-2}$$

$$y' = 2x - 2x^{-3}$$

$$Ex: y = (x^2 + 1)^5$$

$$\frac{dy}{dx} = 5(x^2 + 1)^4 \cdot 2x$$

$$\therefore 10x(x^2 + 1)^4$$

$$Ex: y = \frac{2x+5}{3x-2}$$

Sol/

$$\frac{dy}{dx} = \frac{(3x-2)*2 - (2x+5)*3}{(3x-2)^2}$$

$$\therefore \frac{6x-4 - 6x-15}{(3x-2)^2}$$

$$\therefore \frac{-19}{(3x-2)^2}$$

$$Ex: y = (x-1)(x+2)$$

$$\frac{dy}{dx} \rightarrow (x-1)*1 + (x+2)(1)$$

$$\therefore x-1 + x+2$$

$$\therefore 2x+1$$