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Crystal Structures

Solid materials may be classified according to the regularity with which atoms
or ions are arranged with respect to one another. A crystalline material is one in
which the atoms are situated in a repeating or periodic array over large atomic
distances—that is, long-range order exists, such that upon solidification, the atoms
will position themselves

(@) ] (b) ©

Figure 3.1 For the face-centered cubic crystal structure, (@) a hard-sphere unit cell representation. (b) a reduced-
sphere unit cell, and (¢) an aggregate of many atoms.

|Fagure (c) adapted from W. G. Moffatt, G. W. Pearsall, and J. Wulff. The Structure and Properties of Materials. Vol. 1, Structure.
John Wiley & Sons. 1964, Reproduced with permission of Janet M. Moffatt.

in a repetitive three-dimensional pattern, in which each atom is bonded to its
nearest neighbor atoms. All metals, many ceramic materials, and certain polymers
form crystal line structures under normal solidification conditions. For those that
do not crystallize, this long-range atomic order is absent; these noncrystalline or
amorphous materials.

Some of the properties of crystalline solids depend on the crystal structure of the
material, the manner in which atoms, ions, or molecules are spatially arranged.
There is an extremely large number of different crystal structures all having long-
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range atomic order; these vary from relatively simple structures for metals to
exceedingly complex ones, as displayed by some of the ceramic and polymeric
materials.

When crystalline structures are described, atoms (or ions) are thought of as being
solid spheres having well-defined diameters. This is termed the atomic hard-sphere
model in which spheres representing nearest-neighbor atoms touch one another. An
example of the hard-sphere model for the atomic arrangement found in some of the
common elemental metals is displayed in Figure 3.1c. In this particular case all the
atoms are identical. Sometimes the term lattice is used in the context of crystal
structures; in this sense lattice means a three-dimensional array of points
coinciding with atom positions (or sphere centers).

UNIT CELLS

The atomic order in crystalline solids indicates that small groups of atoms form a
repetitive pattern. Thus, in describing crystal structures, it is often convenient to
subdivide the

structure into small repeat entities called unit cells. Unit cells for most crystal
structures are parallelepipeds or prisms having three sets of parallel faces; one is
drawn within the aggregate of spheres (Figure 3.1c), which in this case happens to
be a cube. A unit cell is chosen to represent the symmetry of the crystal structure,
wherein all the atom positions in the crystal may be generated by translations of
the unit cell integral distances along each of its edges. Thus, the unit cell is the
basic structural unit or building block of the crystal structure and defines the
crystal structure by virtue of its geometry and the atom positions within.
Convenience usually dictates that parallelepiped corners coincide with centers of
the hard-sphere atoms. Furthermore, more than a single unit cell may be chosen for
a particular
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crystal structure; however, we generally use the unit cell having the highest level
of geometrical symmetry.

METALLIC CRYSTAL STRUCTURES

The atomic bonding in this group of materials is metallic and thus nondirectional
in nature. Consequently, there are minimal restrictions as to the number and
position of nearest-neighbor atoms; this leads to relatively large numbers of nearest
neighbors and dense atomic packings for most metallic crystal structures. Also, for
metals, when we use the hard-sphere model for the crystal structure, each sphere
represents an ion core. Table 3.1 presents the atomic radii for a number of metals.
Three relatively simple crystal structures are found for most of the common
metals: face-centered cubic, body centered cubic, and hexagonal close-packed.

The Face-Centered Cubic Crystal Structure

The crystal structure found for many metals has a unit cell of cubic geometry, with atoms
located at each of the corners and the centers of all the cube faces. It 1s aptly called the
face-centered cubic (FCC) crystal structure. Some of the familiar metals having this
crystal structure are copper. aluminum, silver, and gold (see also Table 3.1). Figure 3.1a
shows a hard-sphere model for the FCC unit cell, whereas in Figure 3.16 the atom
centers are represented by small circles to provide a better perspective on atom positions.
The aggregate of atoms in Figure 3.1¢ represents a section of crystal consisting of many
FCC umit cells. These spheres or 10n cores touch one another across a face diagonal; the
cube edge length @ and the atomic radius R are related through

a=2R\2 (3.1)

This result 1s obtained in Example Problem 3.1,
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Crystal Aromic Radius® Crystal Atomic
Meral Structure” (nm) Meral Structure Radius (nm)
Aluminum  FCC 0.1431 Molybdenum  BCC (.1363
Cadmium HCP 0.1490 Nickel FCC 0.1246
Chromium  BCC (.1249 Platinum FCC (.1387
Cobalt HCP 0.1253 Silver FCC 0.1445
Copper FCC 01278 Tantalum BCC 0.1430
Gold FCC 0.1442 Titanium () HCP 0.1445
Iron (o) BCC 01241 Tungsten BCC 0.1371
Lead FCC 0.1750 Zinc HCP (.1332

"FCC = face-centered cubic: HCP = hexagonal close-packed: BCC = body-centered cubic.
*A nanometer (nm) equals 1077 m: to convert from nanometers to angstrom units (A),
multiply the nanometer value by 10.

On occasion, we need to determine the number of atoms associated with cach unit
cell. Depending on an atom’s location, it may be considered to be shared with adja-
cent unit cells—that is, only some Iraction of the atom is assigned Lo a specilic cell. For
example, for cubic unit cells. an atom completely within the interior “belongs™ to that
unit cell, one at a cell face is shared with one other cell, and an atom residing at a corner
is shared among cight. The number of atoms per unit cell, N, can be computed using the
following formula:

e N (3.2)

>
|

, = the number of interior atoms

1l

the number of face atoms
N, = the number of corner atoms

For the FCC crystal structure. there are cight corner atoms (N, = 8), six face atoms
(Ny= 6), and no interior atoms (N; = 0). Thus, Irom Equation 3.2,
6 S
N=0+ 5 + g =4

or a total of four whole atoms may be assigned to a given unit cell. This is depicted in
Figure 3.1a. where only sphere portions are represented within the confines of the cube.
The cell is composed of the volume of the cube that 1s generated from the centers of the
corner atoms, as shown in the figure.

Corner and face positions are really equivalent—that is. translation of the cube
corner from an original corner atom to the center of a face atom will not alter the cell
structure.
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Two other important characteristics of a crystal structure are the coordination
number and the atomic packing factor (APF). For metals, cach atom has the same num-
ber of nearest-neighbor or touching atoms, which is the coordination number. For face-
centered cubics. the coordination number is 12. This may be confirmed by examination
of Figure 3.1a; the front face atom has four corner nearest-neighbor atoms surrounding
it, four face atoms that are in contact from behind, and four other equivalent face atoms
residing in the next unit cell to the front (not shown).

The APF is the sum of the sphere volumes of all atoms within a unit cell (assuming
the atomic hard-sphere model) divided by the unit cell volume—that is,

volume of atoms in a unit cell
APF =

total unit cell volume

For the FCC structure, the atomic packing factor is 0.74, which is the maximum pack-
ing possible for spheres all having the same diameter. Computation of this APF is also
included as an example problem. Metals typically have relatively large atomic packing
factors to maximize the shielding provided by the free electron cloud.

The Body-Centered Cubic Crystal Structure

Another common metallic crystal structure also has a cubic unit cell with atoms located
at all eight corners and a single atom at the cube center. This is called a body-centered
cubic (BCC) crystal structure. A collection of spheres depicting this crystal structure is
shown in Figure 3.2¢, whereas Figures 3.24 and 3.2b are diagrams of BCC unit cells with
the atoms represented by hard-sphere and reduced-sphere models, respectively. Center

(a) (b)

Figure 3.2 For the body-centered cubic crystal structure, (a) a hard-sphere unit cell representation. (b) a reduced-
sphere unit cell, and (¢) an aggregate of many atoms.

[Figure () adapted from W. G. Moffatt, G. W, Pearsall, and J. Wulff, The Structure and Properties of Matertals, Vol. 1, Structure,
John Wiley & Sons, 1964, Reproduced with permission of Janet M. Moffatt.|
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and corner atoms touch one another along cube diagonals, and unit cell length a and
atomic radius R are related through

4R

a = —
V3

(3.4)

Chromium, iron. tungsten. and several other metals listed in Table 3.1 exhibit a BCC
structure.

Each BCC unit cell has eight corner atoms and a single center atom, which is wholly con-
tained within its cell; therefore. from Equation 3.2, the number of atoms per BCC unit cell is
.'V,’ Atr

.-V,+2+8

N

1 +0+2=2
8

The coordination number for the BCC crystal structure is 8: cach center atom has as
nearest neighbors its cight corner atoms. Because the coordination number is less for
BCC than for FCC, the atomic packing factor is also lower for BCC—0.68 versus 0.74.

It is also possible to have a unit cell that consists of atoms situated only at the
corners of a cube. This is called the simiple cubic (SC) crvstal structure; hard-sphere and
reduced-sphere models are shown, respectively, in Figures 3.3a and 3.35. None of the
metallic elements have this crystal structure because of its relatively low atomic packing
lactor (see Concept Check 3.1). The only simple-cubic element is polonium, which is
considered to be a metalloid (or semi-metal).

The Hexagonal Close-Packed Crystal Structure

Not all metals have unit cells with cubic symmetry: the final common metallic crystal
structure to be discussed has a unit cell that is hexagonal. Figure 3.4a shows a reduced-
sphere unit cell for this structure. which is termed hexagonal close-packed (HCP); an
assemblage of several HCP unit cells is presented in Figure 3.45." The top and bottom

Figure 3.3 For the simple cubic crystal
structure, (a) a hard-sphere unit cell. and
(f) a reduced-sphere unit cell.
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faces of the unit cell consist of six atoms that form regular hexagons and surround a
single atom in the center. Another plane that provides three additional atoms to the unit
cell is situated between the top and bottom planes. The atoms in this midplane have as
nearest neighbors atoms in both of the adjacent two planes.
In order to compute the number of atoms per unit cell for the HCP erystal structure,
Equation 3.2 is modified to read as follows:
N=N,+ l + i (3.5)
i/ 2 6 /
That is, one-sixth of each corner atom is assigned o a unit cell (instead of 8 as with the
cubic structure ). Because for HCP there are 6 corner atoms in each of the top and bot-
tom faces (for a total of 12 corner atoms), 2 face center atoms (one from cach of the
top and bottom faces), and 3 midplane interior atoms, the value of N for HCP is found,
using Equation 3.5, to be

(b)

Figure 3.4 For the hexagonal close-packed crystal structure, (@) a reduced-sphere unit cell (2 and ¢ represent the
short and long edge lengths, respectively), and (b) an aggregate of many atoms.
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EXAMPLE PROBLEM 3.1

i | Determination of FCC Unit Cell Volume
Calculate the volume of an FCC unit cell in terms of the atomic radius R.
Solution

In the FCC unit cell illustrated, the atoms touch one another
across a face-diagonal, the length of which is 4R. Because the
unit cell is a cube, its volume is a’, where a is the cell edge
length. From the right triangle on the face,

a + a* = (4R’

or, solving for a.

a=2RV2 (3.1)
The FCC unit cell volume V- may be computed from
Ve=a' = (2Ry2) = 16R* {2 (3.6)

EXAMPLE PROBLEM 3.2

i | Computation of the Atomic Packing Factor for FCC

Show that the atomic packing factor for the FCC erystal structure is 0,74,
Solution

The APF is defined as the fraction of solid sphere volume in a unit cell, or

volume of atoms in a unit cell Vi
APF = =

total unit cell volume = Ve

Both the total atom and unit cell volumes may be calculated in terms of the atomic radius R.
The volume for a sphere is _%nR:‘. and because there are four atoms per FCC unit cell, the total
FCC atom (or sphere) volume is

Vs = (4)inR* = $nR*
From Example Problem 3.1, the total unit cell volume is
Ve = 16R'V2
Therefore, the atomic packing factor is
Vs (%)”R"
T Ve 16RV2
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EXAMPLE PROBLEM 3.3

Determination of HCP Unit Cell Volume

(a) Calculate the volume of an HCP unit cell in
terms of its @ and ¢ lattice parameters.

(b) Now provide an expression for this volume in
terms of the atomic radius, R, and the ¢ lattice
parameter.

Solution
(a) We use the adjacent reduced-sphere HCP unit
cell to solve this problem.

Now. the unit cell volume is just the product
of the base area times the cell height. ¢. This base
area is just three times the area of the parallel-
epiped ACDE shown below. (This ACDE paral-
lelepiped is also labeled in the above unit cell.)

The arca of ACDE is just the length of CD
times the height BC. But CD is just a. and BC is equal to

av3
7

BC = acos(30°) =

Thus, the base area is just

a v’g) _ 3a*y3

2

AREA = (3)(CD)(BC) = (3)(a)(

2

Again, the unit cell volume V- is just the product of the
AREA and c; thus,
Ve = AREA(c)
3a*V3
()
3a’c\/3 .

(b) For this portion of the problem, all we need do is realize that the lattice parameter a is
related to the atomic radius R as
a=2R
Now making this substitution for a in Equation 3.7a gives
3(2R)%cV3
S
= 6R%c\/3 (3.7b)
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DENSITY COMPUTATIONS

A knowledge of the crystal structure of a metallic solid permits computation of its theo-
retical density p through the relationship

B nA
- VeNa

[ (3.8)

where

number of atoms associated with cach unit cell

..
=
1l

A = atomic weight
Vi = volume of the unit cell
N, = Avogadro’s number (6.022 X 10* atoms/mol)

EXAMPLE PROBLEM 3.4

Theoretical Density Computation for Copper
Copper has an atomic radius of 0.128 nm, an FCC crystal structure. and an atomic weight of
63.5 g/mol. Compute its theoretical density, and compare the answer with its measured density.
Solution
Equation 3.8 is employed in the solution of this problem. Because the crystal structure is
FCC, i, the number of atoms per unit cell, is 4. Furthermore, the atomic weight A, is given
as 63.5 g/imol. The unit cell volume V- for FCC was determined in Example Problem 3.1 as
16R*\/2. where R, the atomic radius, is 0.128 nm.
Substitution for the various parameters into Equation 3.8 yields
nAe, nAe,
e S s
VeNa  (16R*\/2)N,
(4 atoms/unit cell)(63.5 gimol)
T [16y/2(1.28 x 107  em)*/unit cell](6.022 X 107 atoms/mol)
= 8.89 g/em’
The literature value for the density of copper is 8.94 giem®, which is in very close agreement
with the foregoing result.
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