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Control Systems 

• Time Response Analysis 
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Time Response Analysis   

 • 1- First step in analysing any control systems is 

to derive its mathematical model. 

• 2- In analyzing and designing any control 

system we must have a basis of performance 

comparison with different control systems 

• 3- This  basis  may be setup by specifying 

particular test input signals and by comparing 

the responses of various control systems to 

these input signals. 

• 4- System is  effected by changing the input  

test signal  or its initial conditions. 

• 5-  
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Time Response Analysis   

 
• 5- Typical test signals which commonly used in 

testing are of the type of: -Step functions           - 

Ramp function  - Impulse functions and   

Sinusoidal functions. 

• 6- Time response analysis can be performed 

only for stable systems. 

• 7- Time response of any system consists from 

Transient response and steady- state response. 

• 8- Stability and steady state error are the most 

important characteristics in any control system. 
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Definition of Pole and Zero 
Consider the transfer function F(s): 

 The system response is given by: 

 The poles are the values of s for which the denominator A(s) = 
0. 

 The zeros are the values of s for which the numerator  B(s) = 0. 
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Effect of Pole Locations 

( ) 1
( )

( )

Y s
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U s s 
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

 The impulse response will be an exponential function: 

( ) 1( )ty t e t 

1
( ) ( )Y s U s

s 
 



When σ > 0, the pole is located at s < 0, 

  The exponential expression y(t) decays. 

  Impulse response is stable. 
 

When σ < 0, the pole is located at s > 0, 

  The exponential expression y(t) grows with time. 

  Impulse response is referred to as unstable. 

A form of first-order 
transfer function 

Dynamic Response 

Consider the transfer function F(s): 
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•PFE 

Effect of Pole Locations 

2
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● The terms e–t and e–2t, which are stable, are determined by the poles at s = –
1 and –2. This is true for more complicated cases as well. 

● In general, the response of a transfer function is determined by the 
locations of its poles. 

Time (sec)

0 1 2 3 4
-0.5

0

0.5

1

1.5

2

( )h t

Example: 
Find the impulse response of H(s), 
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Dynamic Response 
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Effect of Pole Locations 
Time function of impulse response assosiated with  

the pole location in s-plane 

LHP RHP 

LHP  : left half-plane  
RHP : right half-plane 

Dynamic Response 
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Representation of a Pole in s-Domain 
 The position of a pole (or a zero) in s-

domain is defined by its real and 
imaginary parts, Re(s) and Im(s). 

 In rectangular coordinates, the 
complex poles are defined as 
(–σ± jωd). 

Complex poles always come in 
conjugate pairs. 

A pair of 
complex 

poles 

Dynamic Response 
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Representation of a Pole in s-Domain 
 The denominator corresponding to a complex pair will be: 

2 2

( ) ( )( )

( )
d d

d

A s s j s j
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On the other hand, the typical polynomial form of a second-
order transfer function is: 
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n n
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 

Comparing A(s) and denominator of H(s), the 
correspondence between the parameters can be found: 

2  1n d n      and
ζ  : damping ratio  
ωn  : undamped natural frequency 
ωd : damped frequency 

Dynamic Response 
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Representation of a Pole in s-Domain 
 Previously, in rectangular 

coordinates, the complex poles are at 
(– ± jωd). 

 In polar coordinates, the poles are at 
(ωn, sin

–1ζ), as can be examined from 
the figure. 

2 2

n d   

n 

21d n    

Dynamic Response 
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Unit Step Resonses of Second-Order System 

( )y t

nt

Dynamic Response 
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Example: 
Find the correlation between the poles and the impulse 
response of the following system, and further find the exact 
impulse response. 

Effect of Pole Locations 
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The exact response can be otained from: 
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Dynamic Response 
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Time (sec)

( )h t

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1.5

2

Effect of Pole Locations 
To find the inverse Laplace transform, the righthand side 
of the last equation is broken into two parts: 
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Damped 
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Dynamic Response 
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Time Domain Specifications 
Specification for a control system design often involve certain 
requirements associated with the step response of the system: 

1. Delay time, td, is the time required for the response to 
reach half the final value for the very first time. 

2. Rise time, tr, is the time needed by the system to reach the 
vicinity of its new set point. 

3. Settling time, ts, is the time required for the response 
curve to reach and stay within a range about the final value, 
of size specified by absolute percentage of the final value. 

4. Maximum Overshoot, Mp, is the maximum peak value of 
the response measured from the final steady-state value of 
the response (often expressed as a percentage). 

5. Peak time, tp, is the time required for the response to 
reach the first peak of the overshoot. 

Dynamic Response 



President University Erwin Sitompul FCS 2/15 

Time Domain Specifications 

,10% 90% ,5% 95% ,0% 100%,  ,  r r rt t t  

, 1% , 2% , 5%,  ,  s s st t t  

( ) ( )
% 100%
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p
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y t y
M
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 
 



Dynamic Response 
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 The step response of first-order system in typical form: 

is given by: 
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( ) (1 ) 1( )ty t e t   •   : time constant 
• For first order system, Mp 

and tp do not apply  

First-Order System 
Dynamic Response 



President University Erwin Sitompul FCS 2/17 

Second-Order System 
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is given by: 
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Dynamic Response 

 The step response of second-order system in typical form: 
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Second-Order System 

Time domain specification 
parameters apply for most 
second-order systems. 

Exception: overdamped 
systems, where ζ > 1 
(system response similar to 
first-order system). 

Desirable response of a 
second-order system is 
usually acquired with  
0.4 < ζ < 0.8. 
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Dynamic Response 
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Rise Time 
 The step response expression of the second order system is 

now used to calculate the rise time, tr,0%–100%: 

Since              , this condition will be 
fulfilled if: 
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 
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tr is a function of ωd  

Dynamic Response 
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Settling Time 
Using the following rule:  

sin cos cos( ),A B C     

 The step response expression 
can be rewritten as: 

2 2 1, tan
A

C A B
B

   
    

 

with:  

 
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





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where:  
ts is a function of ζ 
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

Dynamic Response 
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Settling Time 
 The time constant of the envelope curves shown previously is 

1/ζωn , so that the settling time corresponding to a certain 
tolerance band may be measured in term of this time 
constant.    
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Dynamic Response 
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Peak Time 
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When the step response y(t) reaches its maximum value 
(maximum overshoot), its derivative will be zero: 
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Dynamic Response 



President University Erwin Sitompul FCS 2/23 

Peak Time 

2
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At the peak time, 

Since the peak time corresponds to the first peak overshoot, 
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tp is a function of ωd 

Dynamic Response 
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Maximum Overshoot 
Substituting the value of tp into the expression for y(t),  
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Dynamic Response 
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Example 1: Time Domain Specifications 
Example: 
Consider a system shown below with ζ  0.6 and ωn  5 rad/s. 
Obtain the rise time, peak time, maximum overshoot, and 
settling time of the system when it is subjected to a unit step 
input. 

2

2 2

( )

( ) 2

n

n n

Y s

R s s s



 


 

After block diagram simplification,  

Standard form of 
second-order system 

Dynamic Response 
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0.6, 5 rad/sn   2 21 1 0.6 5 4 rad/sd n        

0.6 5 3 rad/sn     

In second quadrant 

Example 1: Time Domain Specifications 
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Dynamic Response 
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Check y(∞) for unit step 
input, if 

Example 1: Time Domain Specifications 
Dynamic Response 
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Example 1: Time Domain Specifications 
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Dynamic Response 
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Example: 
For the unity feedback system shown below, specify the gain K 
of the proportional controller so that the output y(t) has an 
overshoot of no more than 10% in response to a unit step. 
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1 1
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
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2 21.689 2.853nK    
0 2.853K  

Example 2: Time Domain Specifications 
Dynamic Response 
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Example 2: Time Domain Specifications 
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: K = 2 
: K = 2.8 

: K = 3 

Dynamic Response 


