

Control Systems

- Time Response Analysis

Time Response Analysis

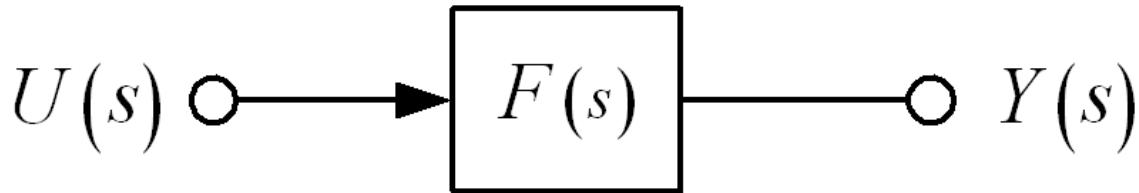
- 1- First step in analysing any control systems is to derive its mathematical model.
- 2- In analyzing and designing any control system we must have a basis of performance comparison with different control systems
- 3- This basis may be setup by specifying particular test input signals and by comparing the responses of various control systems to these input signals.
- 4- System is effected by changing the input test signal or its initial conditions.

Time Response Analysis

- 5- Typical test signals which commonly used in testing are of the type of: -Step functions
Ramp function - Impulse functions and
Sinusoidal functions.
- 6- Time response analysis can be performed only for stable systems.
- 7- Time response of any system consists from Transient response and steady- state response.
- 8- Stability and steady state error are the most important characteristics in any control system.

Definition of Pole and Zero

- Consider the transfer function $F(s)$:



$$\frac{Y(s)}{U(s)} = F(s) \Rightarrow F(s) = \frac{B(s)}{A(s)}$$

Numerator polynomial
—————
Denominator polynomial

- The system response is given by:

$$Y(s) = F(s)U(s) = \frac{B(s)}{A(s)}U(s)$$

- The **poles** are the values of s for which the denominator $A(s) = 0$.
- The **zeros** are the values of s for which the numerator $B(s) = 0$.

Effect of Pole Locations

- Consider the transfer function $F(s)$:

$$H(s) = \frac{Y(s)}{U(s)} = \frac{1}{s + \sigma} \quad \Rightarrow Y(s) = \frac{1}{s + \sigma} U(s)$$

A form of first-order transfer function

- The impulse response will be an exponential function:

$$y(t) = e^{-\sigma t} \cdot 1(t)$$

- When $\sigma > 0$, the pole is located at $s < 0$,
 - The exponential expression $y(t)$ decays.
 - Impulse response is **stable**.
- When $\sigma < 0$, the pole is located at $s > 0$,
 - The exponential expression $y(t)$ grows with time.
 - Impulse response is referred to as **unstable**.

Effect of Pole Locations

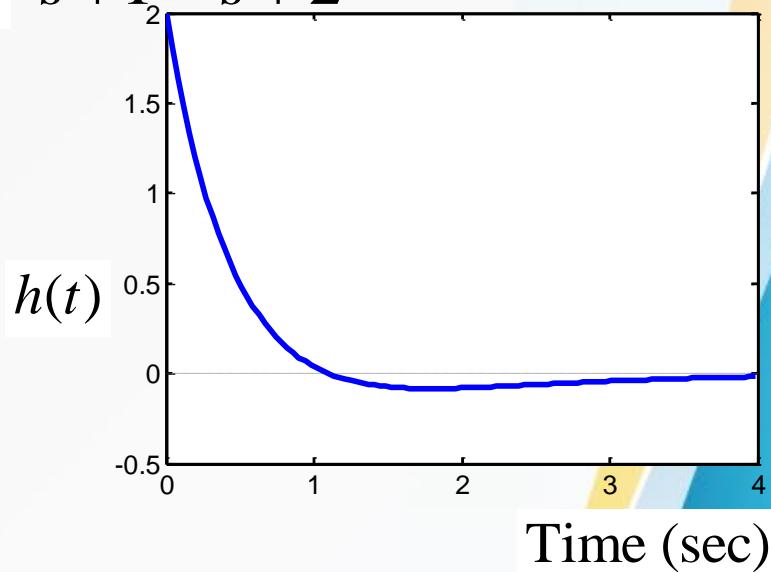
Example:

Find the impulse response of $H(s)$,

$$H(s) = \frac{2s+1}{s^2 + 3s + 2} = \frac{2s+1}{(s+1)(s+2)} = \frac{-1}{s+1} + \frac{3}{s+2}$$

$$h(t) = -\mathcal{L}^{-1} \left\{ \frac{1}{s+1} \right\} + 3\mathcal{L}^{-1} \left\{ \frac{1}{s+2} \right\}$$

$$h(t) = \underline{(-e^{-t} + 3e^{-2t}) \cdot 1(t)}$$



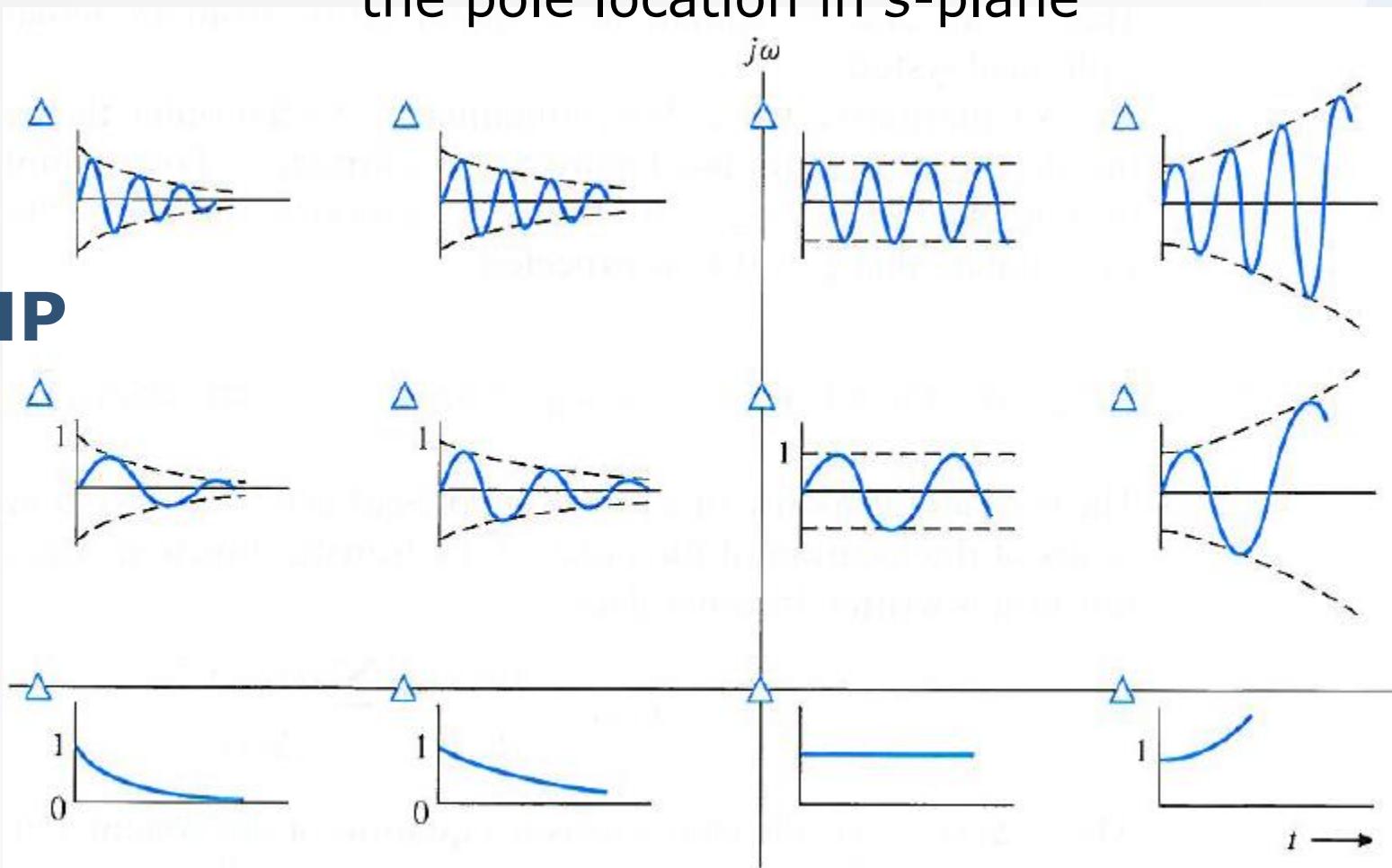
- The terms e^{-t} and e^{-2t} , which are stable, are determined by the poles at $s = -1$ and -2 . This is true for more complicated cases as well.
- In general, the response of a transfer function is determined by the locations of its poles.

Effect of Pole Locations

Time function of impulse response associated with the pole location in s -plane

LHP

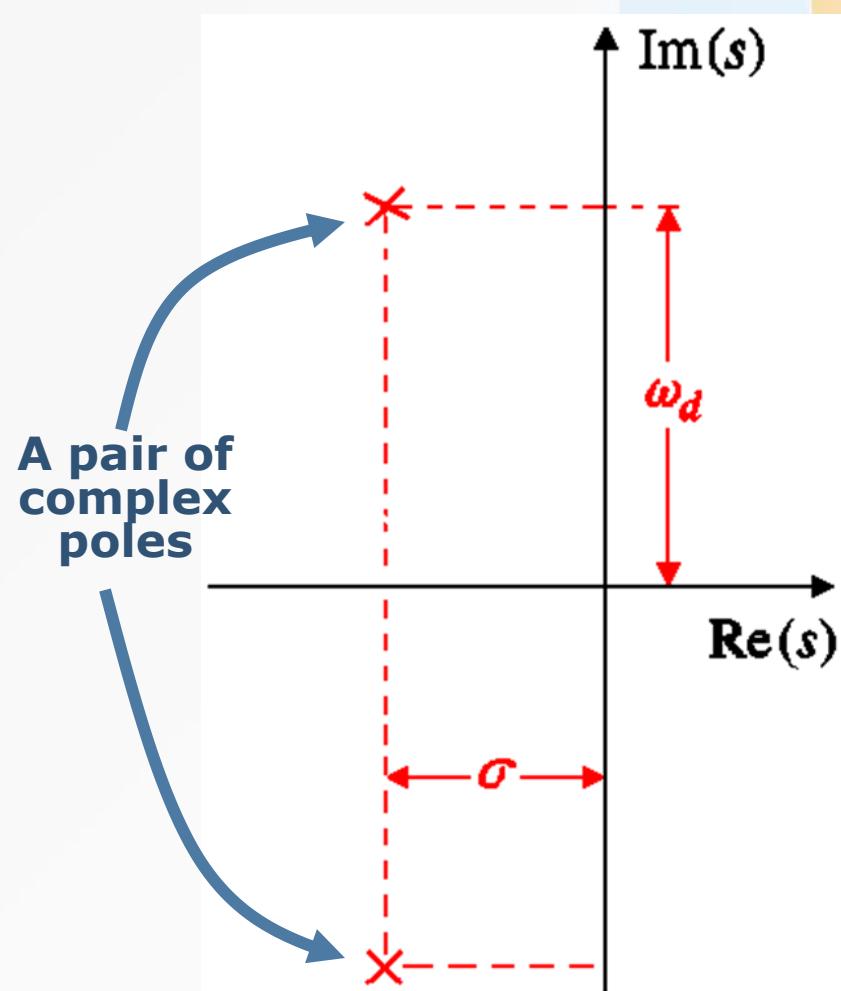
RHP



LHP : left half-plane
RHP : right half-plane

Representation of a Pole in s -Domain

- The position of a pole (or a zero) in s -domain is defined by its **real** and **imaginary parts**, $\text{Re}(s)$ and $\text{Im}(s)$.
- In rectangular coordinates, the complex poles are defined as $(-\sigma \pm j\omega_d)$.
- Complex poles always come in conjugate pairs.



Representation of a Pole in s-Domain

- The denominator corresponding to a complex pair will be:

$$\begin{aligned}A(s) &= (s + \sigma - j\omega_d)(s + \sigma + j\omega_d) \\&= (s + \sigma)^2 + \omega_d^2\end{aligned}$$

- On the other hand, the typical polynomial form of a second-order transfer function is:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

- Comparing $A(s)$ and denominator of $H(s)$, the correspondence between the parameters can be found:

$$\sigma = \zeta\omega_n \text{ and } \omega_d = \omega_n \sqrt{1 - \zeta^2}$$

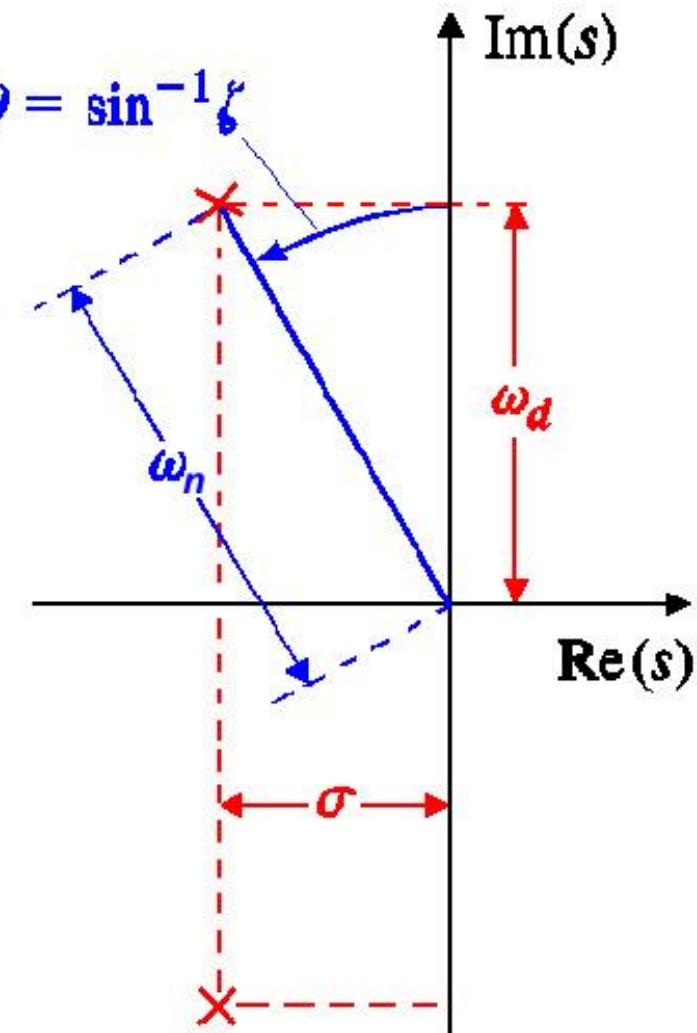
ζ : damping ratio
 ω_n : undamped natural frequency
 ω_d : damped frequency

Representation of a Pole in s -Domain

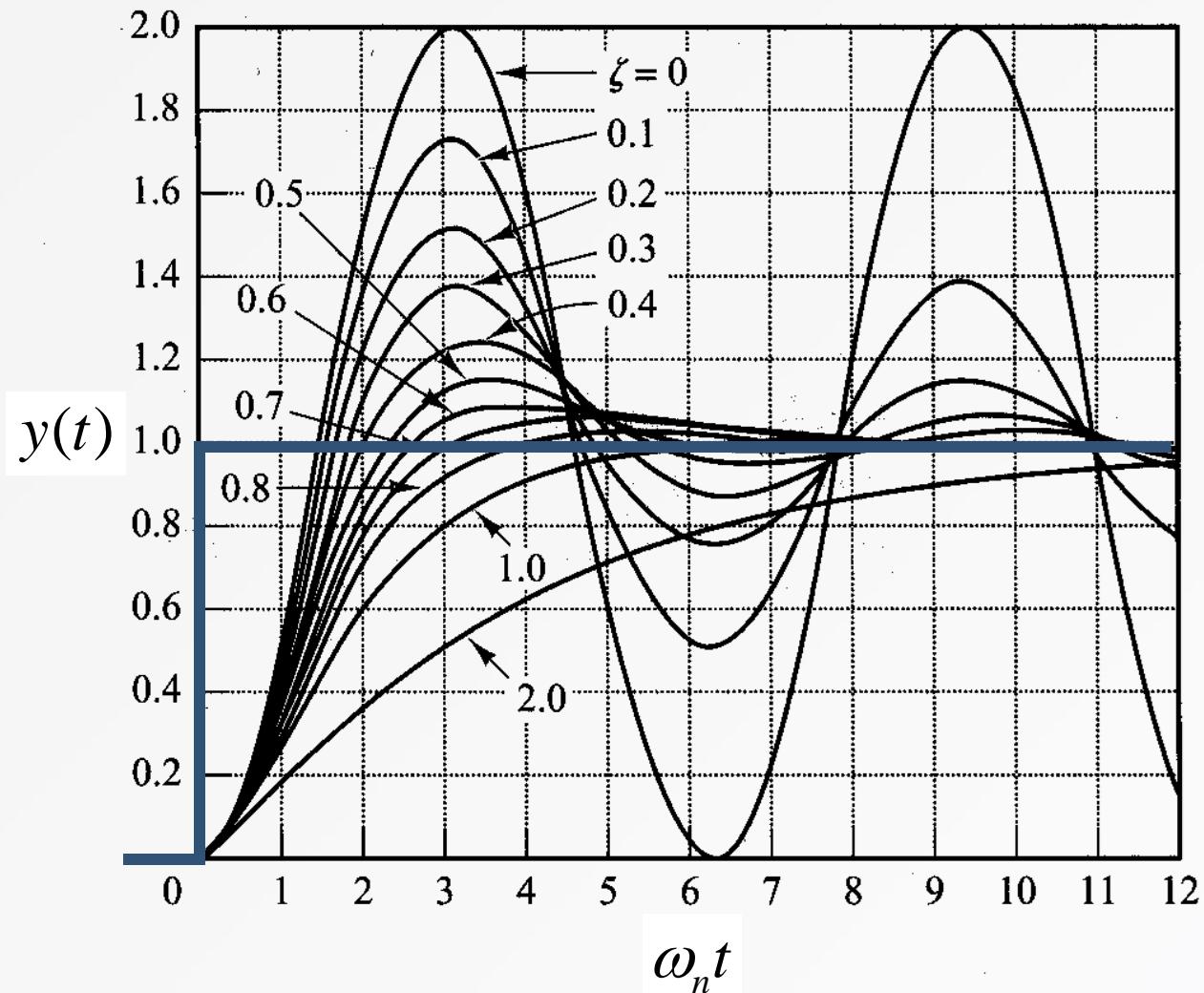
- Previously, in rectangular coordinates, the complex poles are at $(-\sigma \pm j\omega_d)$.
- In polar coordinates, the poles are at $(\omega_n, \sin^{-1}\zeta)$, as can be examined from the figure.

$$\sigma = \zeta \omega_n$$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2} \quad \Leftrightarrow \quad \omega_n = \sqrt{\sigma^2 + \omega_d^2}$$



Unit Step Responses of Second-Order System



Effect of Pole Locations

Example:

Find the correlation between the poles and the impulse response of the following system, and further find the exact impulse response.

$$H(s) = \frac{2s+1}{s^2 + 2s + 5}$$

Since $H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$, $\omega_n^2 = 5 \Rightarrow \omega_n = \sqrt{5} = 2.24$ rad/sec
 $2\zeta\omega_n = 2 \Rightarrow \zeta = 0.447$

The exact response can be obtained from:

$$H(s) = \frac{2s+1}{s^2 + 2s + 5} = \frac{2s+1}{(s+1)^2 + 2^2} \Rightarrow \text{poles at } s = -1 \pm j2$$

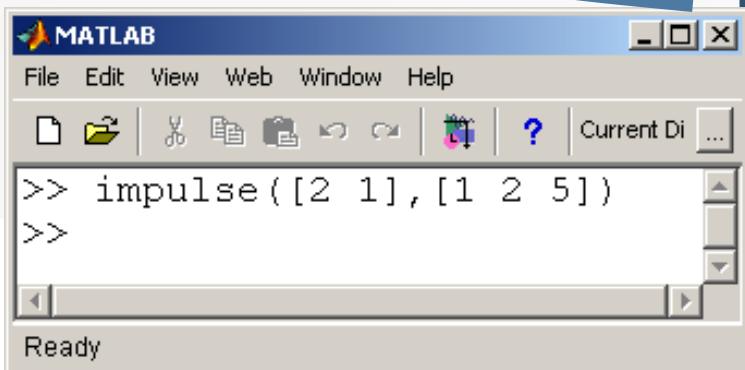
Effect of Pole Locations

To find the inverse Laplace transform, the righthand side of the last equation is broken into two parts:

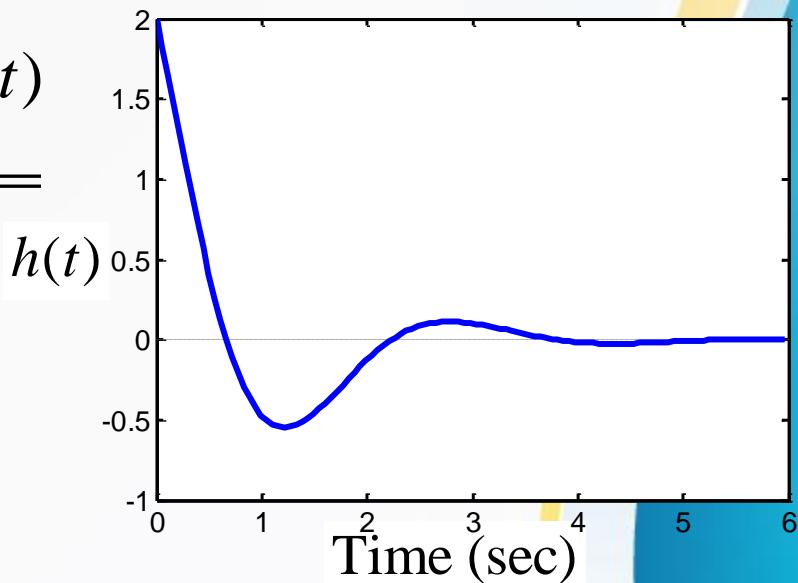
$$\begin{aligned}
 H(s) &= \frac{2s+1}{(s+1)^2 + 2^2} \\
 &= 2 \frac{s+1}{(s+1)^2 + 2^2} - \frac{1}{2} \frac{2}{(s+1)^2 + 2^2}
 \end{aligned}$$

$$\begin{aligned}
 h(t) &= \mathcal{L}^{-1}(H(s)) \\
 &= \left(2e^{-t} \cos 2t - \frac{1}{2} e^{-t} \sin 2t \right) \cdot 1(t)
 \end{aligned}$$

Damped sinusoidal oscillation



$f(t)$	$F(s)$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
$e^{-at} \sin \omega t$	$\frac{\omega}{(s+a)^2 + \omega^2}$
$e^{-at} \cos \omega t$	$\frac{s+a}{(s+a)^2 + \omega^2}$

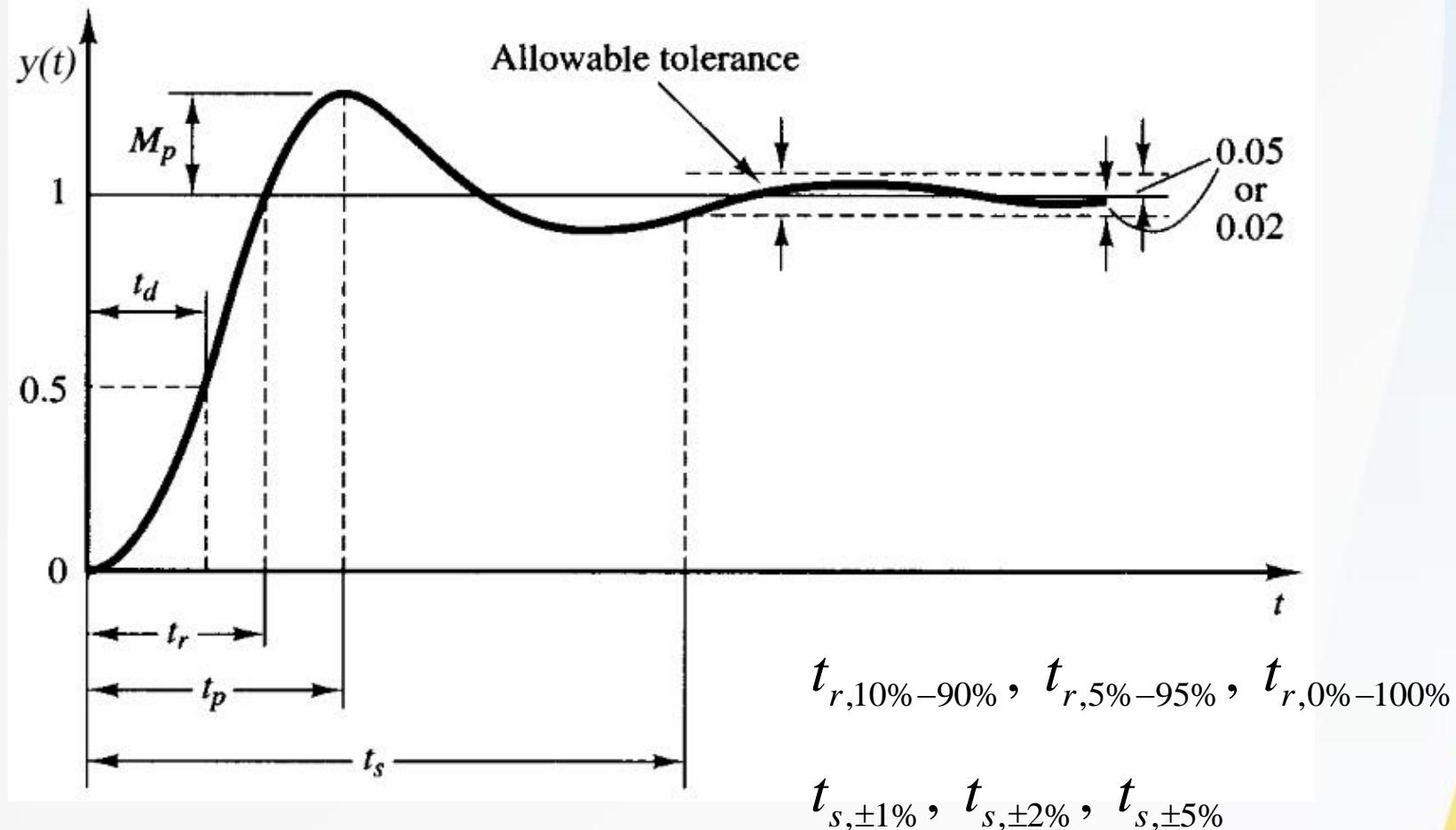


Time Domain Specifications

Specification for a control system design often involve certain requirements associated with the step response of the system:

- 1. Delay time**, t_d , is the time required for the response to reach half the final value for the very first time.
- 2. Rise time**, t_r , is the time needed by the system to reach the vicinity of its new set point.
- 3. Settling time**, t_s , is the time required for the response curve to reach and stay within a range about the final value, of size specified by absolute percentage of the final value.
- 4. Maximum Overshoot**, M_p , is the maximum peak value of the response measured from the final steady-state value of the response (often expressed as a percentage).
- 5. Peak time**, t_p , is the time required for the response to reach the first peak of the overshoot.

Time Domain Specifications



$$\% M_p = \frac{y(t_p) - y(\infty)}{y(\infty)} \cdot 100\%$$

First-Order System

- The step response of first-order system in typical form:

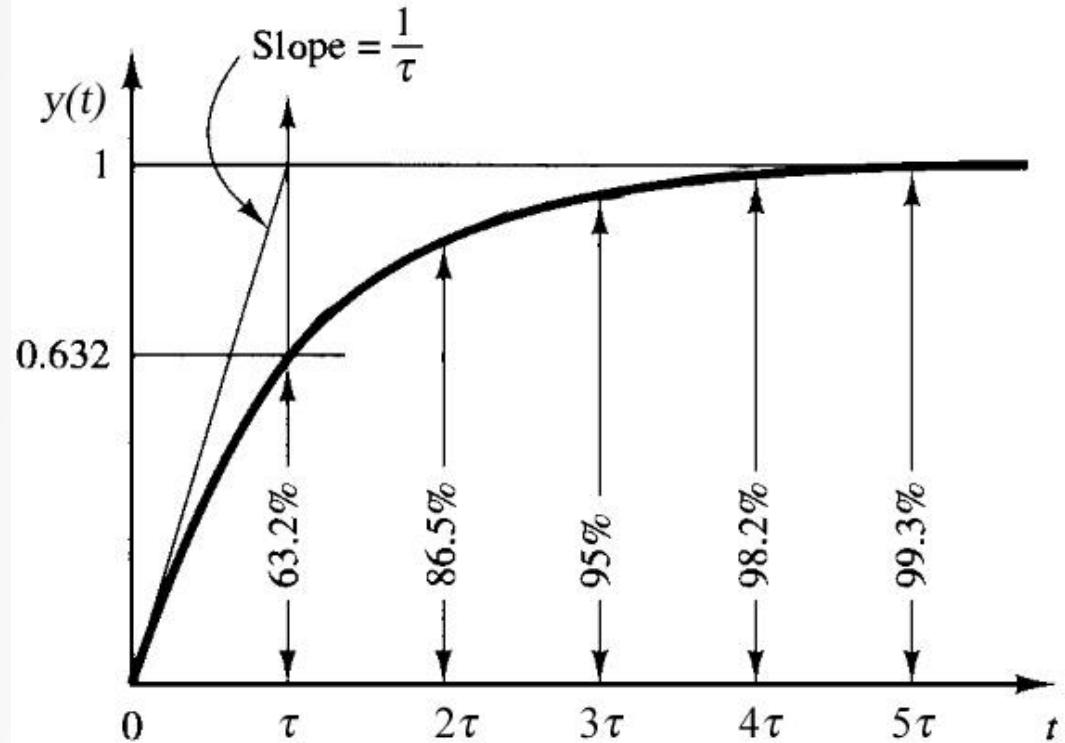
$$H(s) = \frac{1}{\tau s + 1}$$

is given by:

$$\begin{aligned} Y(s) &= \frac{1}{\tau s + 1} \cdot \frac{1}{s} \\ &= \frac{1}{s} - \frac{1}{s + (1/\tau)} \end{aligned}$$

$$y(t) = \mathcal{L}^{-1} \left\{ \frac{1}{s} - \frac{1}{s + (1/\tau)} \right\}$$

$$y(t) = (1 - e^{-t/\tau}) \cdot 1(t)$$



- τ : time constant
- For first order system, M_p and t_p do not apply

Second-Order System

- The step response of second-order system in typical form:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

is given by:

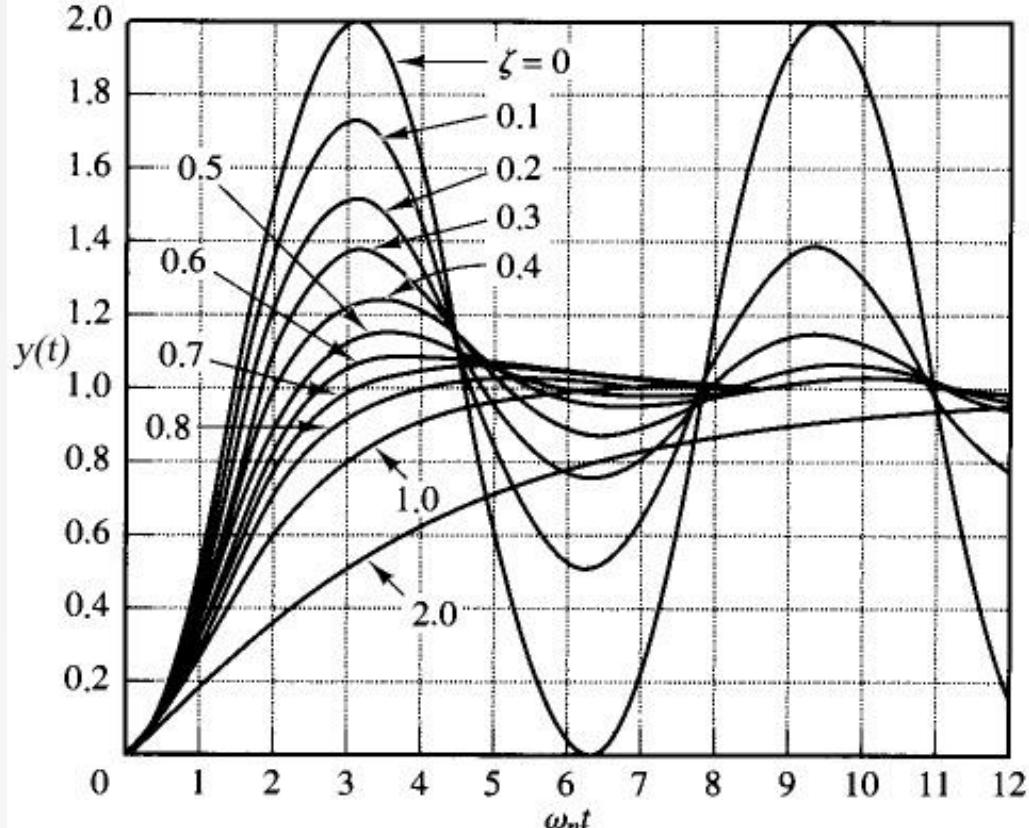
$$Y(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \cdot \frac{1}{s}$$

$$= \frac{1}{s} - \frac{s + \zeta\omega_n}{(s + \zeta\omega_n)^2 + \omega_d^2} - \frac{\zeta\omega_n}{(s + \zeta\omega_n)^2 + \omega_d^2}$$

$$y(t) = \mathcal{L}^{-1} \{Y(s)\} = 1 - e^{-\zeta\omega_n t} \cos \omega_d t - \frac{\zeta}{\sqrt{1 - \zeta^2}} e^{-\zeta\omega_n t} \sin \omega_d t$$

$$y(t) = 1 - e^{-\zeta\omega_n t} \left(\cos \omega_d t + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_d t \right)$$

Second-Order System



$$y(t) = 1 - e^{-\zeta \omega_n t} \left(\cos \omega_d t + \frac{\zeta}{\sqrt{1-\zeta^2}} \sin \omega_d t \right)$$

- Time domain specification parameters apply for most second-order systems.
- Exception: overdamped systems, where $\zeta > 1$ (system response similar to first-order system).
- Desirable response of a second-order system is usually acquired with $0.4 < \zeta < 0.8$.

Rise Time

- The step response expression of the second order system is now used to calculate the rise time, $t_{r,0\%-100\%}$:

$$y(t_r) = 1 \equiv 1 - e^{-\zeta \omega_n t_r} \left(\cos \omega_d t_r + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_d t_r \right)$$

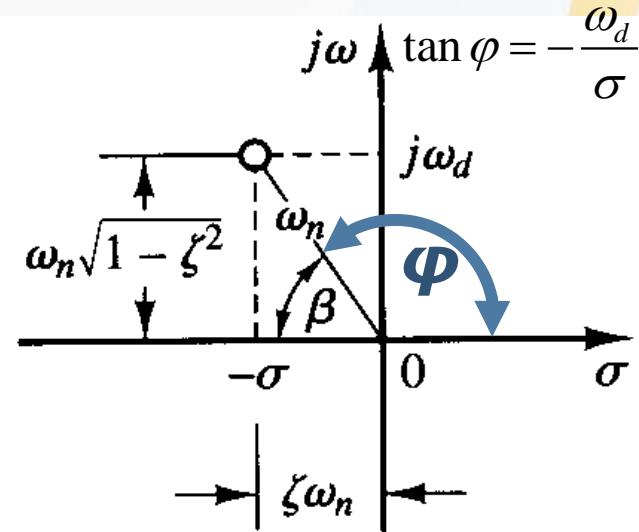
- Since $e^{-\zeta\omega_n t_r} \neq 0$, this condition will be fulfilled if:

$$\cos \omega_d t_r + \frac{\zeta}{\sqrt{1-\zeta^2}} \sin \omega_d t_r = 0$$

$$\text{or, } \tan \omega_d t_r = -\frac{\sqrt{1-\zeta^2}}{\zeta} = -\frac{\omega_d}{\sigma}$$

$$t_r = \frac{1}{\omega_d} \tan^{-1} \left(-\frac{\omega_d}{\sigma} \right) = \frac{(\pi - \beta)}{\omega_d}$$

t_r is a function of ω_d



$$\sigma = \zeta \omega_n$$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

Settling Time

- Using the following rule:

$$A \sin \alpha + B \cos \alpha = C \cos(\alpha - \beta),$$

with:

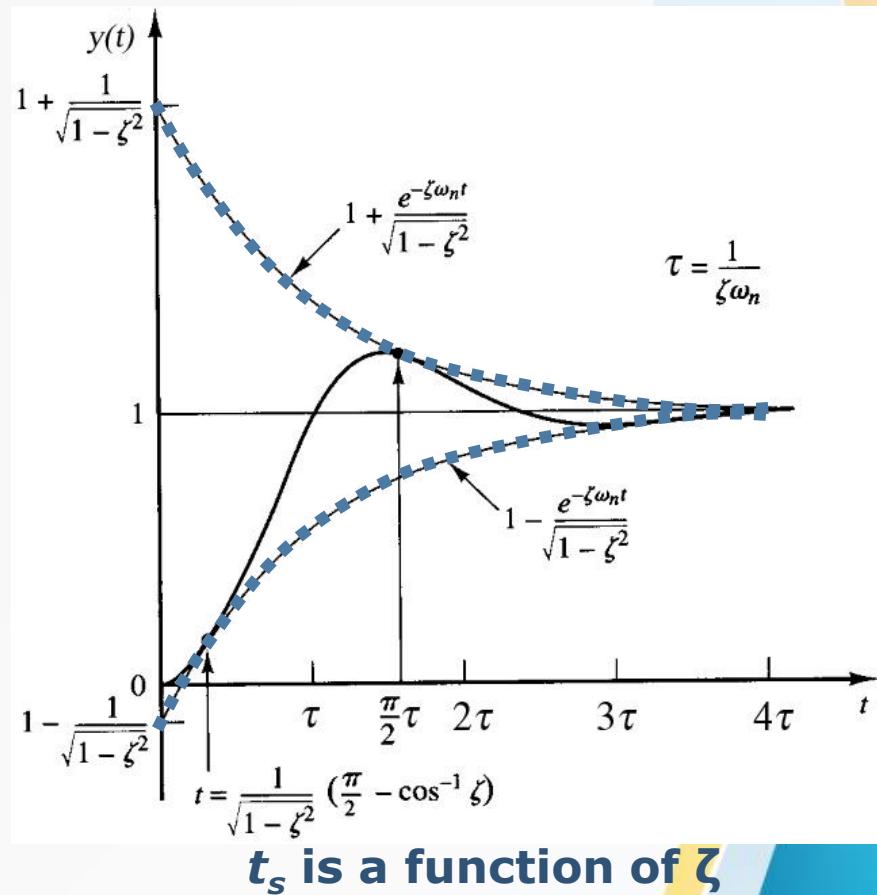
$$C = \sqrt{A^2 + B^2}, \beta = \tan^{-1} \left(\frac{A}{B} \right)$$

- The step response expression can be rewritten as:

$$y(t) = 1 - \frac{e^{-\zeta \omega_n t}}{\sqrt{1-\zeta^2}} \cdot (\cos(\omega_d t - \beta))$$

where:

$$\beta = \tan^{-1} \left(\frac{\zeta}{\sqrt{1-\zeta^2}} \right)$$



t_s is a function of ζ

$$\boxed{\tau = \frac{1}{\zeta \omega_n}}$$

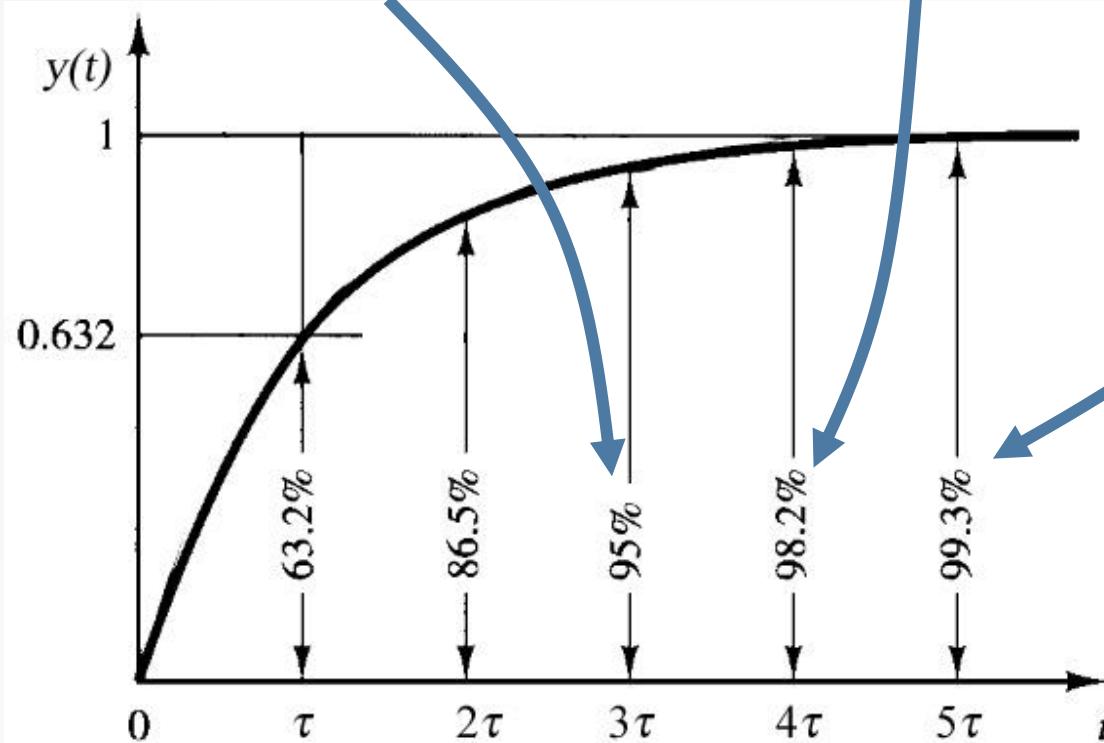
Settling Time

- The time constant of the envelope curves shown previously is $1/\zeta\omega_n$, so that the settling time corresponding to a certain tolerance band may be measured in term of this time constant.

$$t_{s,\pm 5\%} = 3\tau = \frac{3}{\zeta\omega_n}$$

$$t_{s,\pm 2\%} = 4\tau = \frac{4}{\zeta\omega_n}$$

$$t_{s,\pm 1\%} = 5\tau = \frac{5}{\zeta\omega_n}$$



Peak Time

- When the step response $y(t)$ reaches its maximum value (maximum overshoot), its derivative will be zero:

$$y(t) = 1 - e^{-\zeta\omega_n t} \left(\cos \omega_d t + \frac{\zeta}{\sqrt{1-\zeta^2}} \sin \omega_d t \right)$$

$$y'(t) = \zeta\omega_n e^{-\zeta\omega_n t} \left(\cos \omega_d t + \frac{\zeta}{\sqrt{1-\zeta^2}} \sin \omega_d t \right) +$$

$$e^{-\zeta\omega_n t} \left(\omega_d \sin \omega_d t - \frac{\zeta\omega_d}{\sqrt{1-\zeta^2}} \cos \omega_d t \right)$$

$$y'(t) = e^{-\zeta\omega_n t} \left(\frac{\zeta^2\omega_n}{\sqrt{1-\zeta^2}} + \omega_d \right) \sin \omega_d t$$

Peak Time

- At the peak time,

$$y'(t_p) = e^{-\zeta\omega_n t_p} \left(\frac{\zeta^2 \omega_n}{\sqrt{1-\zeta^2}} + \omega_d \right) \sin \omega_d t_p \equiv 0$$

$\equiv 0$

$$\omega_d t_p = 0, \pi, 2\pi, 3\pi, \dots$$

- Since the peak time corresponds to the first peak overshoot,

$$t_p = \frac{\pi}{\omega_d}$$

t_p is a function of ω_d

Maximum Overshoot

- Substituting the value of t_p into the expression for $y(t)$,

$$y(t_p) = 1 - e^{-\zeta\omega_n t_p} \left(\cos \omega_d t_p + \frac{\zeta}{\sqrt{1-\zeta^2}} \sin \omega_d t_p \right)$$

$$y(t_p) = 1 - e^{-\zeta\omega_n \cdot \pi/\omega_d} \left(\cos \pi + \frac{\zeta}{\sqrt{1-\zeta^2}} \sin \pi \right) = 1 + e^{-\zeta\pi/\sqrt{1-\zeta^2}}$$

$$\begin{aligned} M_p &= y(t_p) - y(\infty) \\ &= (1 + e^{-\zeta\pi/\sqrt{1-\zeta^2}}) - 1 \end{aligned}$$

$$M_p = e^{-\zeta\pi/\sqrt{1-\zeta^2}}$$

$$\% M_p = \frac{y(t_p) - y(\infty)}{y(\infty)} \cdot 100\%$$

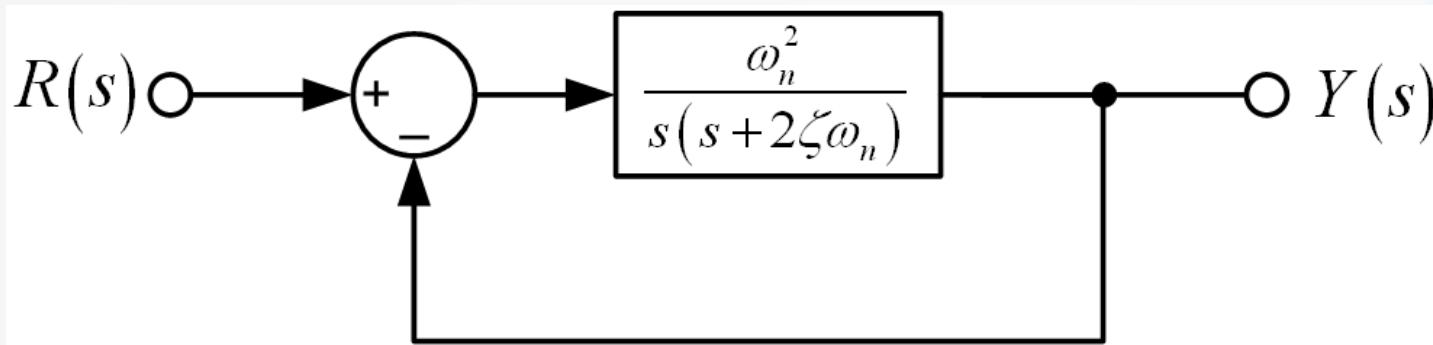
$$\% M_p = e^{-\zeta\pi/\sqrt{1-\zeta^2}} \cdot 100\%$$

if $y(\infty) = 1$

Example 1: Time Domain Specifications

Example:

Consider a system shown below with $\zeta = 0.6$ and $\omega_n = 5$ rad/s. Obtain the rise time, peak time, maximum overshoot, and settling time of the system when it is subjected to a unit step input.



After block diagram simplification,

$$\frac{Y(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

**Standard form of
second-order system**

Example 1: Time Domain Specifications

$$\zeta = 0.6, \omega_n = 5 \text{ rad/s} \Rightarrow \omega_d = \sqrt{1 - \zeta^2} \omega_n = \sqrt{1 - 0.6^2} \cdot 5 = 4 \text{ rad/s}$$

$$\Rightarrow \sigma = \zeta \omega_n = 0.6 \cdot 5 = 3 \text{ rad/s}$$

$$t_r = \frac{1}{\omega_d} \tan^{-1} \left(-\frac{\omega_d}{\sigma} \right) \quad \text{In second quadrant}$$

$$= \frac{1}{4} \tan^{-1} \left(-\frac{4}{3} \right) = \frac{1}{4} (\pi - 0.927) = \underline{\underline{0.554 \text{ s}}}$$

$$t_p = \frac{\pi}{\omega_d} = \frac{\pi}{4} = \underline{\underline{0.785 \text{ s}}}$$

Example 1: Time Domain Specifications

$$M_p = y(t_p) - y(\infty) = (1 + e^{-\zeta\pi/\sqrt{1-\zeta^2}}) - 1$$

$$M_p = e^{-\zeta\pi/\sqrt{1-\zeta^2}} = e^{-(0.6\cdot\pi)/0.8} = \underline{\underline{0.0948}}$$

$$\%M_p = e^{-\zeta\pi/\sqrt{1-\zeta^2}} \cdot 100\% = \underline{\underline{9.48\%}}$$

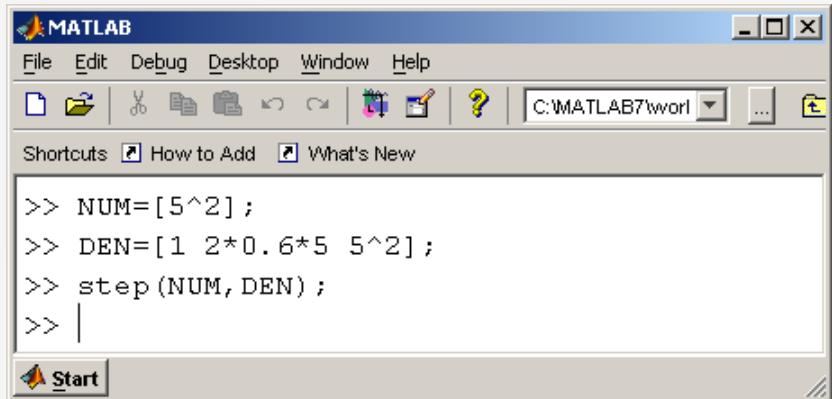
$$t_{s,\pm 2\%} = \frac{4}{\zeta\omega_n} = \frac{4}{0.6 \cdot 5} = \underline{\underline{1.333 \text{ s}}}$$

$$t_{s,\pm 5\%} = \frac{3}{\zeta\omega_n} = \frac{3}{0.6 \cdot 5} = \underline{\underline{1 \text{ s}}}$$

Check $y(\infty)$ for unit step input, if

$$\frac{Y(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

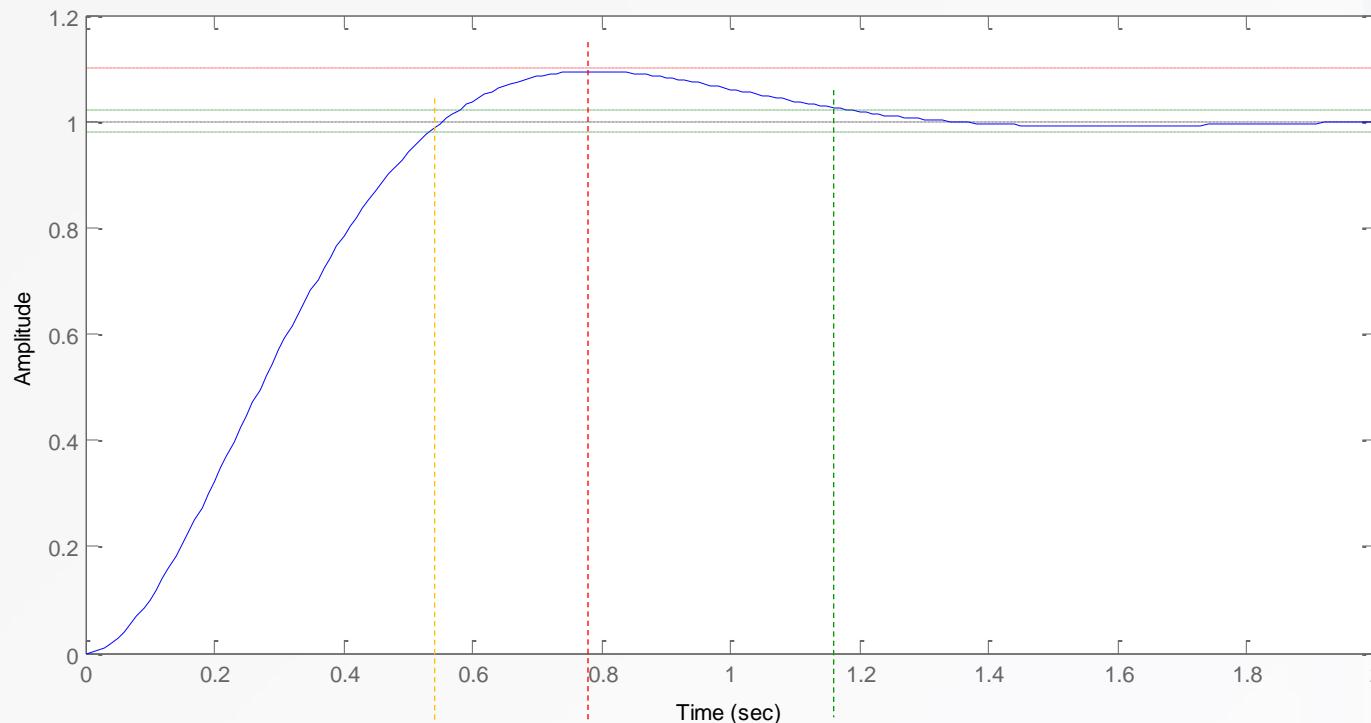
Example 1: Time Domain Specifications



```
>> NUM=[5^2];
>> DEN=[1 2*0.6*5 5^2];
>> step(NUM, DEN);
>> |
```

$$t_r = 0.554 \text{ s}, t_p = 0.785 \text{ s}$$

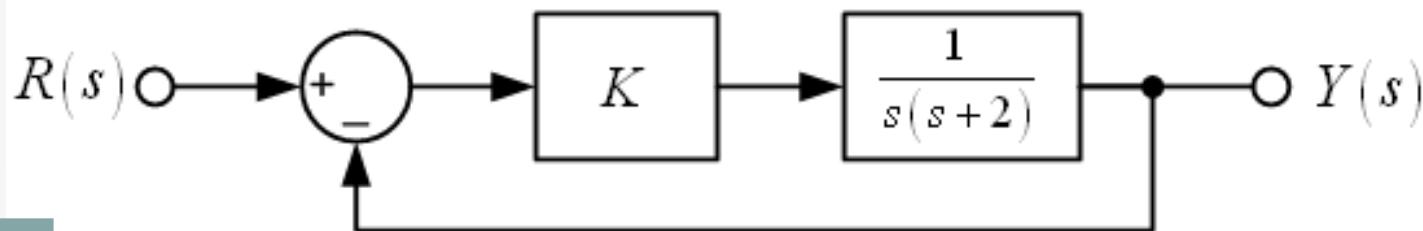
$$M_p = 9.48\%, t_s = 1.333 \text{ s}$$



Example 2: Time Domain Specifications

Example:

For the unity feedback system shown below, specify the gain K of the proportional controller so that the output $y(t)$ has an overshoot of no more than 10% in response to a unit step.



$$\frac{Y(s)}{R(s)} = \frac{\frac{K}{s(s+2)}}{1 + \frac{K}{s(s+2)}} = \frac{K}{s^2 + 2s + K} \Rightarrow 2\zeta\omega_n = 2 \\ \Rightarrow \omega_n^2 = K$$

$$\%M_p \leq 10\% \Rightarrow e^{-\zeta\pi/\sqrt{1-\zeta^2}} \leq 0.1 \Rightarrow \zeta \geq 0.592$$

$$\Rightarrow \omega_n = \frac{1}{\zeta} \leq \frac{1}{0.592} = 1.689$$

$$\Rightarrow K = \omega_n^2 \leq 1.689^2 = 2.853$$

$$\therefore \underline{0 < K \leq 2.853}$$

Example 2: Time Domain Specifications

