

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level (the boiling point drops as you ascend). The interest paid on a cash investment depends on the length of time the investment is held. The area of a circle depends on the radius of the circle. The distance an object travels from an initial location along a straight line path depends on its speed.

In each case, the value of one variable quantity, which we might call y , depends on the value of another variable quantity, which we might call x . Since the value of y is completely determined by the value of x , we say that y is a function of x . Often the value of y is given by a *rule* or formula that says how to calculate it from the variable x . For instance, the equation $A = \pi r^2$ is a rule that calculates the area A of a circle from its radius r .

In calculus we may want to refer to an unspecified function without having any particular formula in mind. A symbolic way to say “ y is a function of x ” is by writing

$$y = f(x) \quad (\text{"}y\text{ equals }f\text{ of }x\text{"})$$

In this notation, the symbol f represents the function. The letter x , called the **independent variable**, represents the input value of f , and y , the **dependent variable**, represents the corresponding output **value** of f at x .

DEFINITION Function

A **function** from a set D to a set Y is a rule that assigns a *unique* (single) element $f(x) \in Y$ to each element $x \in D$.

The set D of all possible input values is called the **domain** of the function. The set of all values of $f(x)$ as x varies throughout D is called the **range** of the function. The range may not include every element in the set Y .

The domain and range of a function can be any sets of objects, but often in calculus they are sets of real numbers. (In Chapters 13–16 many variables may be involved.)

Think of a function f as a kind of machine that produces an output value $f(x)$ in its range whenever we feed it an input value x from its domain (Figure 1.22). The function

Activate Win
Go to Settings to c

FIGURE 1.22 A diagram showing a function as a kind of machine.

keys on a calculator give an example of a function as a machine. For instance, the \sqrt{x} key on a calculator gives an output value (the square root) whenever you enter a nonnegative number x and press the \sqrt{x} key. The output value appearing in the display is usually a decimal approximation to the square root of x . If you input a number $x < 0$, then the calculator will indicate an error because $x < 0$ is not in the domain of the function and cannot be accepted as an input. The \sqrt{x} key on a calculator is not the same as the exact mathematical function f defined by $f(x) = \sqrt{x}$ because it is limited to decimal outputs and has only finitely many inputs.

A function can also be pictured as an **arrow diagram** (Figure 1.23). Each arrow associates an element of the domain D to a unique or single element in the set Y . In Figure 1.23, the arrows indicate that $f(a)$ is associated with a , $f(x)$ is associated with x , and so on.

The domain of a function may be restricted by context. For example, the domain of the area function given by $A = \pi r^2$ only allows the radius r to be positive. When we define a function $y = f(x)$ with a formula and the domain is not stated explicitly or restricted by context, the domain is assumed to be the largest set of real x -values for which the formula gives real y -values, the so-called **natural domain**. If we want to restrict the domain in some way, we must say so. The domain of $y = x^2$ is the entire set of real numbers. To restrict the function to, say, positive values of x , we would write “ $y = x^2, x > 0$.”

Changing the domain to which we apply a formula usually changes the range as well. The range of $y = x^2$ is $[0, \infty)$. The range of $y = x^2, x \geq 2$, is the set of all numbers obtained by squaring numbers greater than or equal to 2. In set notation, the range is $\{x^2 | x \geq 2\}$ or $\{y | y \geq 4\}$ or $[4, \infty)$.

When the range of a function is a set of real numbers, the function is said to be **real-valued**. The domains and ranges of many real-valued functions of a real variable are intervals or combinations of intervals. The intervals may be open, closed, or half open, and may be finite or infinite.

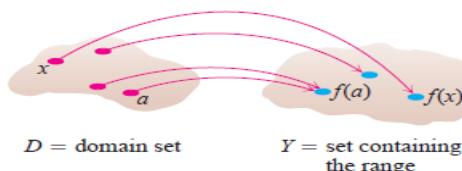


FIGURE 1.23 A function from a set D to a set Y assigns a unique element of Y to each element in D .

Domain represents values of (x)

Range represents values of (y)

Example1: Find the domain and range of $y=x^2+1$

Solution//

Domain function=R or $-\infty \leq x \leq +\infty$

$$y=x^2+1 \rightarrow x=\pm\sqrt{y-1}$$

Range function = $y \geq 1$

Example 2: Find the domain and range of $y=\frac{2x}{x-1}$

Solution//

$x-1=0 \rightarrow x=1 \rightarrow$ domain function=R except {1}

$$y=\frac{2x}{x-1} \rightarrow yx-y=2x$$

$$x=\frac{y}{y-2}$$

$$y-2=0 \rightarrow y = 2$$

Range function=R except {2}

Find the domain and range of $y=\frac{1}{x+1} - \frac{1}{x-1}$

Solution//

$$x+1=0 \rightarrow x=-1$$

$$x-1=0 \rightarrow x = 1$$

Domain function=R except {-1,1}

$$y=\frac{1}{x+1} - \frac{1}{x-1}$$

$$y=\frac{(x-1)-(x+1)}{(x+1)(x-1)}$$

$$y=\frac{-2}{(x^2-1)}$$

$$yx^2 - y = -2$$

$$\rightarrow x = \frac{\sqrt{-2+y}}{\sqrt{y}}$$

$$y > 0 \text{ and } y \geq 2$$

$$\text{Range function}=y > 0 \cup y \geq 2$$

Find the domain and range of $y = \sqrt{\frac{x-1}{x+2}}$

Solution/

$$x-1 \geq 0 \rightarrow x \geq 1$$

$$x+2 \geq 0 \rightarrow x > -2$$

Domain function = $\{x: x \geq 1\} \cup \{x: x > -2\}$

$$y = \sqrt{\frac{x-1}{x+2}}$$

$$y^2 = \frac{x-1}{x+2} \rightarrow xy^2 + 2y^2 = x - 1$$

$$\rightarrow xy^2 - x = -1 - 2y^2$$

$$\rightarrow x = \frac{-1 - 2y^2}{y^2 - 1} \rightarrow y^2 - 1 = 0 \rightarrow y = \pm 1$$

Range function = R except {+1, -1}