

(Continuous Functions) : الدوال المستمرة

The Continuity Test:

The function $y = f(x)$ is continuous at $x=c$ if and only if the following statements are true:

- 1- $f(c)$ exists
- 2- $\lim_{x \rightarrow c} f(x)$ exists
- 3- $f(c) = \lim_{x \rightarrow c} f(x)$

Example: did the function $f(x) = 8 - x^3 - 2x^2$ is continuous at the $x=2$?

Sol:

$$f(2) = 8 - 2^3 - 2 * (2)^2 = 8$$

$$\lim_{x \rightarrow 2} [8 - x^3 - 2x^2] = 8 - 2^3 - 2 * (2)^2 = 8$$

$$f(2) = \lim_{x \rightarrow 2} f(x).$$

So the function is continuous at $x=2$.

THEOREM Properties of Continuous Functions

If the functions f and g are continuous at $x = c$, then the following combinations are continuous at $x = c$.

1. *Sums:* $f + g$
2. *Differences:* $f - g$
3. *Products:* $f \cdot g$
4. *Constant multiples:* $k \cdot f$, for any number k
5. *Quotients:* f/g provided $g(c) \neq 0$
6. *Powers:* $f^{r/s}$, provided it is defined on an open interval containing c , where r and s are integers

$$\lim_{x \rightarrow c} (f + g)(x) = \lim_{x \rightarrow c} (f(x) + g(x)) = \lim_{x \rightarrow c} f(x) + \lim_{x \rightarrow c} g(x) = f(c) + g(c) = (f + g)(c)$$

This shows that $f + g$ is continuous.

THEOREM: Composite of Continuous Functions

If f is continuous at c and g is continuous at c , then the composite $g \circ f$ is continuous at c .

The following types of functions are continuous at every point in their domains:

1 – Polynomials.

2 – Rational functions: They have points of discontinuity at the zero of their denominators.

3 – Root functions: ($y = \sqrt[n]{x}$, n a positive integer greater than 1).

4 – Trigonometric functions.

5 – Inverse trigonometric functions.

6 – Exponential functions.

7 – Logarithmic functions.

Note: The inverse function of any continuous function is continuous.

Example

Show that $f(x)$ has a continuous extension to $x=2$ and find that extension.

$$f(x) = \frac{x^2 + x - 6}{x^2 - 4}$$

Sol.

Although $f(2)$ is not defined,

If $x \neq 2$ we have

$$f(x) = \frac{x^2 + x - 6}{x^2 - 4} = \frac{(x-2)(x+3)}{(x-2)(x+2)} = \frac{x+3}{x+2}$$

The function $g(x) = \frac{x+3}{x+2}$ is equivalent to $f(x) = \frac{x^2+x-6}{x^2-4}$, but $g(x)$ is continuous at $x=2$ having a $\lim_{x \rightarrow 2} g(x) = \frac{5}{4}$ and $g(2) = 5/4$.

Examples:

$$1) f(x) = \begin{cases} \frac{2x^2+x-3}{x-1} & x \neq 1 \\ 2 & x = 1 \end{cases}$$

$$1 - f(1) = 2$$

$$2 - \lim_{x \rightarrow 1} \frac{2x^2 + x - 3}{x - 1} = \lim_{x \rightarrow 1} \frac{(2x+3)(x-1)}{(x-1)} = 2(1) + 3 = 5$$

$$3 - \lim_{x \rightarrow 1} f(x) \neq f(1)$$

$\therefore f(x)$ discontinuous at $x = 1$.

$$2) f(x) = \begin{cases} 3 + x & x \leq 1 \\ 3 - x & x > 1 \end{cases}$$

$$1 - f(1) = 3 + 1 = 4$$

$$2 - \lim_{x \rightarrow 1^-} 3 + x = 3 + 1 = 4$$

$$3 - \lim_{x \rightarrow 1^+} 3 - x = 3 - 1 = 2 \quad \therefore \lim_{x \rightarrow 1^-} 3 + x \neq \lim_{x \rightarrow 1^+} 3 - x$$

$\therefore f(x)$ discontinuous at $x = 1$.

$$3) f(x) = \begin{cases} \frac{1}{x-2} & x \neq 2 \\ 3 & x = 2 \end{cases}$$

$f(2) = 3$ & $\lim_{x \rightarrow 2} \frac{1}{x-2} = \frac{1}{0} = \infty \quad \therefore \text{no limit, } f(x) \text{ discontinuous.}$

$$4) f(x) = \begin{cases} \frac{x^2-16}{x-4} & x \neq 4 \\ 9 & x = 4 \end{cases}$$

$f(4) = 9$, $\lim_{x \rightarrow 4} \frac{x^2-16}{x-4} = \lim_{x \rightarrow 4} \frac{(x-4)(x+4)}{(x-4)} = 8$, $f(4) \neq \lim_{x \rightarrow 4} f(x)$

$\therefore f(x)$ discontinuous at $x = 4$.