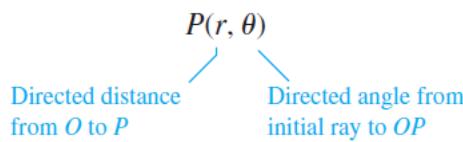
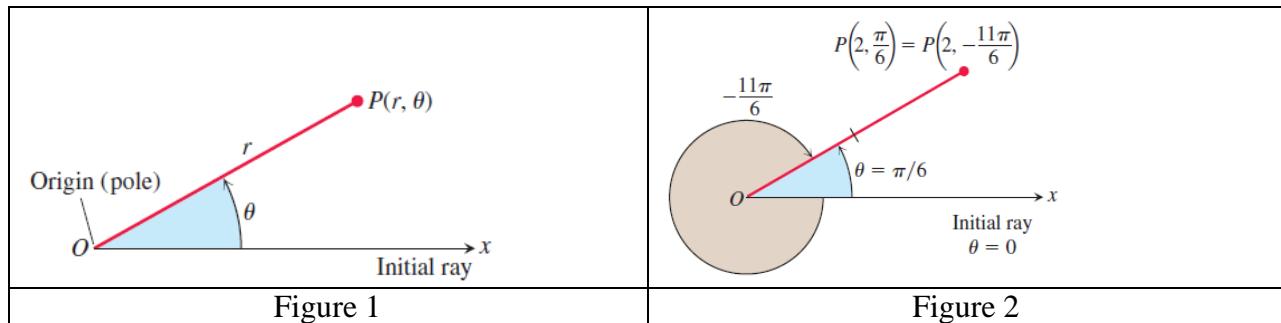


Polar Coordinates

To define polar coordinates, we first fix an **origin O** (called the **pole**) and an **initial ray** from O (Figure 1). Usually the positive x -axis is chosen as the initial ray. Then each point P can be located by assigning to it a **polar coordinate pair** (r, θ) in which r gives the directed distance from O to P and θ gives the directed angle from the initial ray to ray OP . So we label the point P as;



For instance, the point 2 units from the origin along the ray $\theta = \pi/6$ has polar coordinates $r = 2$, $\theta = \pi/6$. It also has coordinates $r = 2$, $\theta = -11\pi/6$ (Figure 2).



The usual way to relate polar and Cartesian coordinates is shown in Figure 3 and is determined using the equation below:

Equations Relating Polar and Cartesian Coordinates

$$x = r \cos \theta, \quad y = r \sin \theta, \quad r^2 = x^2 + y^2, \quad \tan \theta = \frac{y}{x}$$

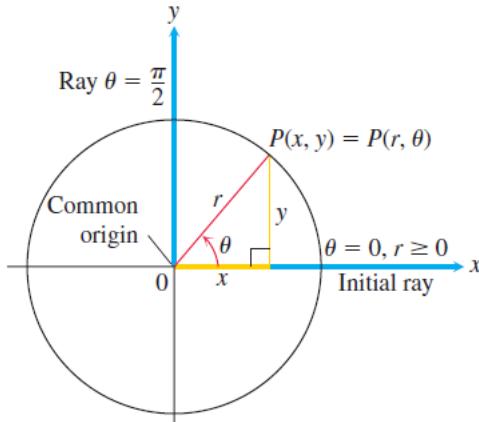
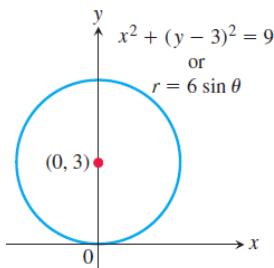


Figure 3

**EXAMPLE**Find a polar equation for the circle $x^2 + (y - 3)^2 = 9$

$$\begin{aligned}x^2 + (y - 3)^2 &= 9 \\x^2 + y^2 - 6y + 9 &= 9 \quad \text{Expand } (y - 3)^2. \\x^2 + y^2 - 6y &= 0 \quad \text{Cancelation} \\r^2 - 6r \sin \theta &= 0 \quad x^2 + y^2 = r^2, y = r \sin \theta \\r = 0 \quad \text{or} \quad r - 6 \sin \theta &= 0 \\r = 6 \sin \theta &\quad \text{Includes both possibilities}\end{aligned}$$

EXAMPLE: Replace the following polar equations by equivalent Cartesian equations and identify their graphs.

- (a) $r \cos \theta = -4$
- (b) $r^2 = 4r \cos \theta$
- (c) $r = \frac{4}{2 \cos \theta - \sin \theta}$

Solution We use the substitutions $r \cos \theta = x$, $r \sin \theta = y$, and $r^2 = x^2 + y^2$.

(a) $r \cos \theta = -4$

The Cartesian equation: $r \cos \theta = -4$ $x = -4$ SubstitutionThe graph: Vertical line through $x = -4$ on the x -axis

(b) $r^2 = 4r \cos \theta$ The Cartesian equation: $r^2 = 4r \cos \theta$

$$x^2 + y^2 = 4x \quad \text{Substitution}$$

$$x^2 - 4x + y^2 = 0$$

$$x^2 - 4x + 4 + y^2 = 4 \quad \text{Completing the square}$$

$$(x - 2)^2 + y^2 = 4 \quad \text{Factoring}$$

The graph: Circle, radius 2, center $(h, k) = (2, 0)$ (c) $r = \frac{4}{2 \cos \theta - \sin \theta}$ The Cartesian equation: $r(2 \cos \theta - \sin \theta) = 4$

$$2r \cos \theta - r \sin \theta = 4 \quad \text{Multiplying by } r$$

$$2x - y = 4 \quad \text{Substitution}$$

$$y = 2x - 4 \quad \text{Solve for } y.$$

EXAMPLE

Here are some plane curves expressed in terms of both polar coordinate and Cartesian coordinate equations.

Polar equation	Cartesian equivalent
$r \cos \theta = 2$	$x = 2$
$r^2 \cos \theta \sin \theta = 4$	$xy = 4$
$r^2 \cos^2 \theta - r^2 \sin^2 \theta = 1$	$x^2 - y^2 = 1$
$r = 1 + 2r \cos \theta$	$y^2 - 3x^2 - 4x - 1 = 0$
$r = 1 - \cos \theta$	$x^4 + y^4 + 2x^2y^2 + 2x^3 + 2xy^2 - y^2 = 0$