dﬁl.uﬂ Z\.’.Ata

Third Stage

Microprocessor

Addressing Modes

PresentedBy: -
Dr. Mohammed Fadhil

Email: mohammed.fadhil1 @uomus.edu.iq

8086 Addressing Modes: Operands and Data Types

Operands hold the data to be processed, defined by register type and memory addressing.

Operand Structure & Roles Detailed Examples
e First operand: Destination (Data is stored here). .
e Second operand: Source (Data is read from here). s Ll MO\::&;’ % 16-bit

[Destination]—»[Source] [BX (Source) }—»[AX (Destination)]

Copies contents of BX to AX

Register and Memory Types

16-bit Registers (e.g., AX, BX, CX, DX) Example 2: ADD AL, BL
. 16-bit 8-bit
! 8-bit Registers (e.g., AL, BL, AH, BH) : [Bl (Source) J + { AL (Destination)]
Memory (Uses offset addresses) Adds contents of BL to AL

Immediate Addressing Mode

The operand value is encoded directly within the instruction.

Examples & Operation Key Characteristics Data Constraints
>| 0004H © No memory fetch 8-bit
16-bit Example J required. Constant
MOV 4H > AX Regist L 16-bit
i i O Execution is fast due to Constant
Loads 0004H into AX direct access.

Fits 8 or 16 bits.
O Constant data must be
8-bit Example f i} known at assembly time.

MOV AL, O4H

>| AL Register

Loads 04H into AL

Direct Addressing Mode

Instruction specifies exact 16-bit memory or |/O offset. Effective for fixed locations.

Memory Access Example: MOV AX, [6000H]

Instruction Code

MOV AX, [6000H]

Memory

6000H Low Byte

6007H | High Byte

J

\/

<:> High Byte | Low Byte

|

Fetches 16-bit word from
6000H-6001H into AX, low
byte first (little-endian).

.

CPU Register AX

Fetches 16-bit word from 6000H-6001H
into AX, low byte first (little-endian).

I/O Port Access Example: IN AL, 80H

.

Instruction Code

IN AL, 86H

\

Port 80H

1/O Port

Data Byte

Y
>

Reads 8-bit data from
I/O port 80H into AL.

]

CPU Register AL

Data Byte

Reads 8-bit data from |/O port 80H into AL.

o
W —
W —
S —

Analysis: Best for fixed memory/I/O; less
flexible for variable data blocks.

Register Addressing Mode

Direct Data Transfer Between CPU Registers.

Core Concept

¢>{ Register A (e.g., AX)ﬁa

Internal Data
Movement

—{ Register B (e.g., BX) w

e Both operands are registers

e No bus cycle occurs

e Data stays within CPU

e Maximal speed & compact code

Key Considerations

16-Bit Example: MOV AX, BX

MOV AX, BX

| &] [B

Copies content of BX register to
AX. Both are 16-bit.

B8 XX YY (illustrative)

o Register choice follows data size (AX for 16-bit, AL for 8-bit).
e Fastest mode due to no external memory access.

8-Bit Example: ADD AL, BL

ADD AL, BL

[A [

—o

Nt

Adds content of BL to AL, stores
result in AL. Both are 8-bit.

92 C3 (illustrative)

Register Indirect Addressing

Concept & Syntax CBX -

e Aregister inside brackets supplies | 4000H | 1
the memory offset. 4000H w o

e Square brackets distinguish 4001H | 1[}
memory from register addressing. 5 UUTUTUT

e Only BX, BP, S, DI are valid for
16-bit offset.

Example: With BX=4000H,
fetches the word at

MOV AX, [BX] 4000H-4001H into AX.

Indexed Addressing Mode

Using Index Registers for Memory Access and Traversal.

[Concept] [Example: Loading 1 [Example: Storing]
Memory Memory Address Memory Address
Index Registers \ 4000H-4001H 6002H-6003H
]
Sl ses
- . . = :
£ hﬁemory o [SI 4000H}—> Data ——>[AX Reglsterj [AX Register J 4—{DI GOOZHJ
) CCESS Index Register Destination ~ Source Register Index Register
[DI | Register
; | Memory Block Memory
Index Registers = with Data Block
S| or DI holds the offset. [MOV AX, [SI] } { MOV [DI], AX J

{ |deal for string or array traversal where the index changes inside loops. J

Register Relative Addressing Mode

Mechanism and Application Example

Concept & Syntax

An 8- or 16-bit displacement is
added to a base register (BX or BP).

MOV AX, 50H[BX] (Primary Syntax)

MOV AX, [BX + 5@H] (Alternative Syntax)

] + ‘ Displacement | —>
Base Register Displacement
(e.g., BX) (8/16-bit)

Effective
Address

Detailed Example Calculation
Assume BX = 4000H

BX: + = Effective Address:
| 4000H |—>| 50H |=| 4050H
(Displacement)
404FH :
4050H | DataByte 1 (e.g, AA) il LIl
4051H | Data Byte 2 (e.g.,, BB) B Y
| Word Data

4052H

Fetches the word at memory locations
4050H-4051H into AX.

Use Cases & Benefits

Accessing structure
fields (e.g.,
struct.field).

Accessing stack
- variables (local data,
parameters).

Efficient for indexed
» data structures with
fixed offsets.

Base Indexed Addressing Mode: Detailed Breakdown

Base Indexed Addressing: [BX] + [SI] or [DI]

(6]

Base Register
(BX)

~

Index Register
(Sl or DI)

\

Combines a Base Register and an Index Register
to calculate the effective address offset. |

(.

Offset Effective
Calculation —» Address |— Memory
(Summation) (Offset)
J . J ~)

] Application: 2-D Array Access

| 4
:

Base Register

Index Register (e.g., SI)
]

>

(e.g., BX)

Efficiently facilitates 2-D array traversal.
The Base Register typically points to the
row, while the Index Register points to
the column within that row.

Example Instruction:
MOV AX, [SI][BX]

7

BX = 4000H (Base)

Register
Values: S| = 2002H (Index)
e _ 6002H
Calculation: | 4000H + 2002H = (Offset)
= Access Word at
6002H <+—— 6002H-6003H
‘ Memory 6003H < |
Access: Loaded
into AX
=T

Base Indexed with Displacement Addressing.

Adds displacement to base plus index registers.

Example Analysis: MOV AX,50H[SI][BX] Applications & Use Cases
]
" Base (BX) = 4000H | e Handles complex data
- \ Effective Address \ structures.
' Index (SI) = 2002H > = 4000H + 2002H + 50H e Accesses 3-Darrays.
: = 6052H | e Manages stack frames with
 Displacement = 50H |—— flexibility.
/ /:,

| A //\ S >

Loads AX with 16-bit &\ \/v)' |

Memory Address (. . data from memory \V - v
6052H-6053H | AXRegister | 4dresses 6052H and N B a/p/
6053H. \\\<:;;/;/v

8086 Intrasegment Jumps: Direct & Indirect Addressing

Concept: Jumps remain within the current code segment. CS register is unchanged; only the
Instruction Pointer (IP) is modified.

1. Intrasegment Direct: JMP SHORT LABEL 2. Intrasegment Indirect: JMP [BX]
Instruction: Instruction:
JMP SHORT LABEL | JMP [BX]
(Opcode + 8-bit Disp.) New [P l i New P
(Target Address) r (Target Address)
BX Register
Current IP (Pointer) Memory Address
(Value: New IP)
e Embeds an 8-bit signed displacement, which is e Loads the new IP value directly from the
added to the current IP to calculate the new memory location pointed to by the BX
target address. register.

Intersegment Control Transfer

Enabling calls to routines in separate 64 kB segments.

Intersegment Direct

[JMP 2000H :3000H]—<

CS Register

~—» 2000H ——[

2000H

J

IP Register

> 3006H —»[

3000H

]

Directly loads new CS and IP

values

from instruction.

Intersegment Indirect
Memory at 2000H

[JMP FAR [ZOOBH]}f

(4 bytes)

New IP (Low)

New IP (High)

New CS (Low)

IP Register

> Newlp |

L

New CS (High)

CS Register

> NewCS |

Fetches 4 bytes from memory.

New IP first, then New CS.

[[—= T_u}lwﬂ\

@VM
L st

a
&

And

10N

Thank You For Your Attention

Quest

ooooo
ooooo
..........

- - - =3
/EEREER NN

iHENEEET o=
| &

K- uf o

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

