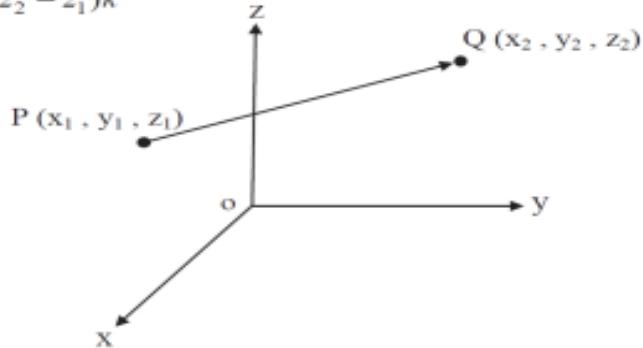


Vector in space

The vector between two points **P** and **Q**

$$\overrightarrow{PQ} = (x_2 - x_1)i + (y_2 - y_1)j + (z_2 - z_1)k$$



Algebra of vectors:

$$\text{Let } V_1 = a_1i + b_1j + c_1k$$

$$V_2 = a_2i + b_2j + c_2k$$

Addition:

$$V_1 + V_2 = (a_1 + a_2)i + (b_1 + b_2)j + (c_1 + c_2)k$$

Subtraction:

$$V_1 - V_2 = (a_1 - a_2)i + (b_1 - b_2)j + (c_1 - c_2)k$$

The magnitude or length of the vector:

$$V = ai + bj + ck$$

$$|V| = \sqrt{a^2 + b^2 + c^2}$$

Direction of vectors **V:**
$$\hat{V} = \frac{V}{|V|}$$

Example: find the length of vector $A = i - 2j + 3k$

Solution:

$$\begin{aligned}|A| &= \sqrt{(1)^2 + (-2)^2 + (3)^2} \\ &= \sqrt{1 + 4 + 9} = \sqrt{14}\end{aligned}$$

Example: find a unit vector u in the direction of the vector from $P_1(1,0,1)$ to $P_2(3,2,0)$.

Solution:

$$\begin{aligned}\overrightarrow{P_1P_2} &= (3-1)i + (2-0)j + (0-1)k \\ &= 2i + 2j - k\end{aligned}$$

$$\begin{aligned}|\overrightarrow{P_1P_2}| &= \sqrt{(2)^2 + (2)^2 + (-1)^2} \\ &= \sqrt{4 + 4 + 1} = \sqrt{9} = 3\end{aligned}$$

$$u = \frac{\overrightarrow{P_1P_2}}{|\overrightarrow{P_1P_2}|} = \frac{2i + 2j - k}{3} = \frac{2}{3}i + \frac{2}{3}j - \frac{1}{3}k$$

Example: A force of 6N is applied in the direction of the vector $V = 2i + 2j - k$, express the force as a product of its magnitude and direction

Solution:

The force vector has magnitude 6 and direction $\frac{V}{|V|}$, so:

$$\begin{aligned}F &= 6 \frac{V}{|V|} = 6 \frac{2i + 2j - k}{\sqrt{(2)^2 + (2)^2 + (-1)^2}} = 6 \frac{2i + 2j - k}{\sqrt{9}} \\ &= 6 \frac{2i + 2j - k}{3}\end{aligned}$$

H.W:

1. Let the vector $u = -i + 3j + k$, find $\left| \frac{1}{2}u \right|$

2. find the length and direction of the vector $v = 4i + 3j + 2k$

3. find the length of the vector with initial point P(-3,4,1) and terminal point Q(-5,2,2)

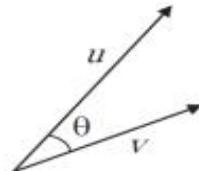
The dot product:

Dot product also called scalar products because the resulting products are numbers and not vectors. To calculate $u \cdot v$ from the component of u and v we let:

$$u = a_1i + b_1j + c_1k$$

$$v = a_2i + b_2j + c_2k$$

$$u \cdot v = |u||v| \cos \theta$$



Where θ is the angle between u and v

$$\cos \theta = \frac{u \cdot v}{|u||v|}$$

$$u \cdot v = a_1a_2 + b_1b_2 + c_1c_2$$

Properties of dot product:

if u , v , and w are any vectors and c is a scalar:

1. $u \cdot v = v \cdot u$

2. $(cu) \cdot v = u \cdot (cv) = c(u \cdot v)$

3. $u \cdot (v + w) = u \cdot v + u \cdot w$

4. $u \cdot u = |u|^2$

5. $0 \cdot u = 0$

Example: find the angle θ between $A = i - 2j - 2k$ and $B = 6i + 3j + 2k$

Solution:

$$A \cdot B = (1)(6) + (-2)(3) + (-2)(2)$$

$$= 6 - 6 - 4 = -4$$

$$|A| = \sqrt{(1)^2 + (-2)^2 + (-2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3$$

$$|B| = \sqrt{(6)^2 + (3)^2 + (2)^2} = \sqrt{36 + 9 + 4} = \sqrt{49} = 7$$

$$\cos \theta = \frac{A \cdot B}{|A||B|} = \frac{-4}{21} \implies \theta = \cos^{-1} \frac{-4}{21} = 100.79^\circ \approx 101^\circ$$

Example: find the angle between the vectors $u = 2i + j$, $v = i + 2j - k$

Solution:

$$u \cdot v = (2)(1) + (1)(2) + (0)(-1)$$

$$= 2 + 2 - 0 = 4$$

$$|u| = \sqrt{(2)^2 + (1)^2 + (0)^2} = \sqrt{4 + 1 + 0} = \sqrt{5}$$

$$|v| = \sqrt{(1)^2 + (2)^2 + (-1)^2} = \sqrt{1 + 4 + 1} = \sqrt{6}$$

$$\cos \theta = \frac{u \cdot v}{|u||v|} = \frac{4}{\sqrt{5}\sqrt{6}} = \frac{4}{\sqrt{30}}$$

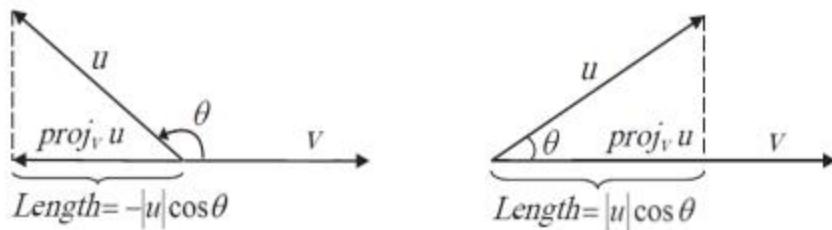
$$\theta = \cos^{-1} \frac{4}{\sqrt{30}} = 43.09^\circ \approx 43^\circ$$

H.W: find the angle between the vectors $u = 2i - 2j + k$, $v = 3i + 4k$

Vector projections and scalar components:

The vector we get by projecting a vector u onto the line through a vector v is called **(the vector projection of u onto v)**, sometimes denoted:

$\text{proj}_v u \implies$ The vector projection of u onto v



The vector projection of u onto v is the vector:

$$\boxed{\text{proj}_v u = \left(\frac{u \cdot v}{|v|^2} \right) v}$$

Where $|v|^2 = v \cdot v$

The scalar component of u in the direction of v is the scalar:

$$\boxed{|u| \cos \theta = \frac{u \cdot v}{|v|} = u \cdot \frac{v}{|v|}}$$

Example: find the vector projection of $u = 6i + 3j + 2k$ onto $v = i - 2j - 2k$ and the scalar component of u in the direction of v

Solution: we find $\text{proj}_v u$ from equation:

$$\begin{aligned}\text{proj}_v u &= \frac{u \cdot v}{v \cdot v} v = \frac{(6)(1) + (3)(-2) + (2)(-2)}{(1)(1) + (-2)(-2) + (-2)(-2)} (i - 2j - 2k) \\ &= \frac{6 - 6 - 4}{1 + 4 + 4} (i - 2j - 2k) \\ &= -\frac{4}{9} (i - 2j - 2k) = -\frac{4}{9}i + \frac{8}{9}j + \frac{8}{9}k\end{aligned}$$

We find the scalar component of u in the direction of v from equation

$$|u| \cos \theta = u \cdot \frac{v}{|v|}$$

$$|v| = \sqrt{(1)^2 + (-2)^2 + (-2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3$$

$$|u| \cos \theta = (6i + 3j + 2k) \cdot \frac{(i - 2j - 2k)}{3}$$

$$|u| \cos \theta = (6i + 3j + 2k) \cdot \left(\frac{1}{3}i - \frac{2}{3}j - \frac{2}{3}k\right)$$

$$= (6)\left(\frac{1}{3}\right) + (3)\left(-\frac{2}{3}\right) + (2)\left(-\frac{2}{3}\right) = 2 - 2 - \frac{4}{3} = -\frac{4}{3}$$

Example: vectors $u = 5i + 12j$ and $v = \frac{3}{5}i + \frac{4}{5}k$, find:

1. the vector $\text{proj}_v u$
2. the scalar component of u in the direction of v

Solution:

1.

$$\text{proj}_v u = \frac{u \cdot v}{v \cdot v} v$$

$$\begin{aligned} &= \frac{(5)(\frac{3}{5}) + (12)(0) + (0)(\frac{4}{5})}{(\frac{3}{5})(\frac{3}{5}) + (0)(0) + (\frac{4}{5})(\frac{4}{5})} (\frac{3}{5}i + \frac{4}{5}k) = \frac{3}{\frac{9}{25} + \frac{16}{25}} (\frac{3}{5}i + \frac{4}{5}k) \\ &= 3(\frac{3}{5}i + \frac{4}{5}k) = \frac{9}{5}i + \frac{12}{5}k \end{aligned}$$

2.

$$|u| \cos \theta = u \cdot \frac{v}{|v|}$$

$$|v| = \sqrt{(\frac{3}{5})^2 + (\frac{4}{5})^2} = \sqrt{\frac{9}{25} + \frac{16}{25}} = \sqrt{\frac{25}{25}} = \sqrt{1} = 1$$

$$|u| \cos \theta = (5i + 12j) \cdot (\frac{3}{5}i + \frac{4}{5}k)$$

$$= (5)(\frac{3}{5}) + (12)(0) + (0)(\frac{4}{5})$$

H.W: vectors $u = -2i + 4j - \sqrt{5}k$ and $v = 2i - 4j + \sqrt{5}k$, find:

1. the vector $\text{proj}_v u$
2. the scalar component of u in the direction of v

Cross product:

Two vector u and v in space if u and v are not parallel, they determine a plane, we select a unit vector n perpendicular to the plane by the right-hand rule. This means that we choose n to be the unit (normal) vector that points the way your right thumb points when your fingers curl through the angle θ from u to v

Properties of the cross product

if u , v , and w are any vectors and r , s is are scalars, then:

1. $(ru) \times (sv) = (rs)(u \times v)$
2. $u \times (v + w) = u \times v + u \times w$
3. $v \times u = -(u \times v)$
4. $(v + w) \times u = v \times u + w \times u$
5. $0 \times u = 0$
6. $u \times (v \times w) = (u \cdot w)v - (u \cdot v)w$

When we apply the definition to calculate the pair wise cross products of i , j , k we fined:

$$\begin{aligned} i \times j &= -(j \times i) = k \\ j \times k &= -(k \times j) = i \\ k \times i &= -(i \times k) = j \\ i \times i &= j \times j = k \times k = 0 \end{aligned}$$

Example: find $u \times v$ and $v \times u$ if $u = 2i + j + k$ and $v = -4i + 3j + k$

Solution:

$$\begin{aligned} u \times v &= \begin{vmatrix} i & j & k \\ 2 & 1 & 1 \\ -4 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} i - \begin{vmatrix} 2 & 1 \\ -4 & 1 \end{vmatrix} j + \begin{vmatrix} 2 & 1 \\ -4 & 3 \end{vmatrix} k \\ &= ((1)(1) - (1)(3))i - ((2)(1) - (1)(-4))j + ((2)(3) - (1)(-4))k \\ &= (1 - 3)i - (2 + 4)j + (6 + 4)k \\ &= -2i - 6j + 10k \\ v \times u &= -(u \times v) = 2i + 6j - 10k \end{aligned}$$

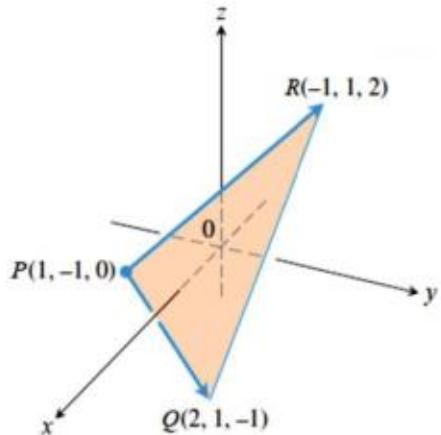
Example: find the area of the triangle with vertices $P(1, -1, 0)$, $Q(2, 1, -1)$

and $R(-1, 1, 2)$

Solution:

The area of the triangle is

$\left(\frac{1}{2}\right) |\overrightarrow{PQ} \times \overrightarrow{PR}|$. in term of components



$$\overrightarrow{PQ} = (2-1)i + (1+1)j + (-1-0)k = i + 2j - k$$

$$\overrightarrow{PR} = (-1-1)i + (1+1)j + (2-0)k = -2i + 2j + 2k$$

$$\begin{aligned}\overrightarrow{PQ} \times \overrightarrow{PR} &= \begin{vmatrix} i & j & k \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = \begin{vmatrix} 2 & -1 \\ 2 & 2 \end{vmatrix} i - \begin{vmatrix} 1 & -1 \\ -2 & 2 \end{vmatrix} j + \begin{vmatrix} 1 & 2 \\ -2 & 2 \end{vmatrix} k \\ &= ((2)(2) - (-1)(2))i - ((1)(2) - (-1)(-2))j + ((1)(2) - (2)(-2))k \\ &= (4+2)i - (2-2)j + (2+4)k \\ &= 6i + 6k\end{aligned}$$

Hence, the triangle's area is:

$$|\overrightarrow{PQ} \times \overrightarrow{PR}| = |6i + 6k| = \sqrt{(6)^2 + (6)^2} = \sqrt{72} = 6\sqrt{2}$$

The triangle's area is half of this = $3\sqrt{2}$