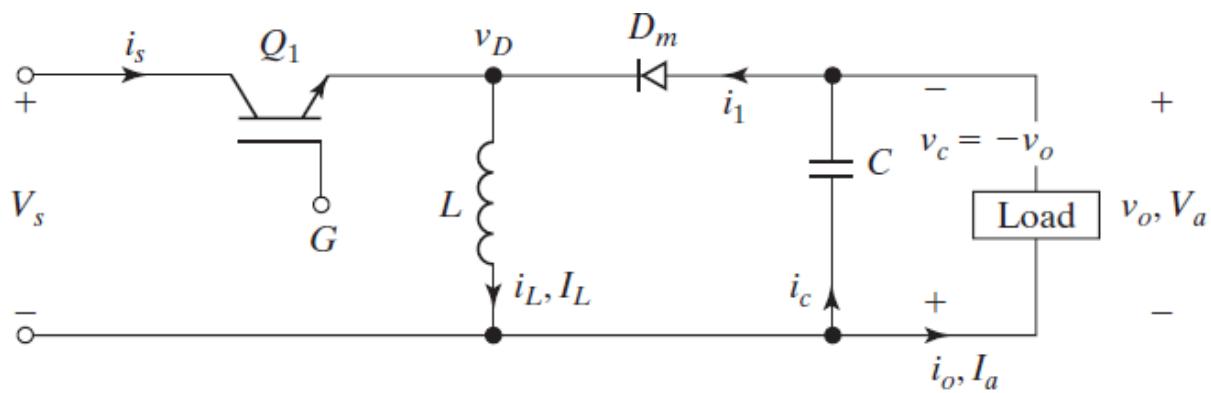
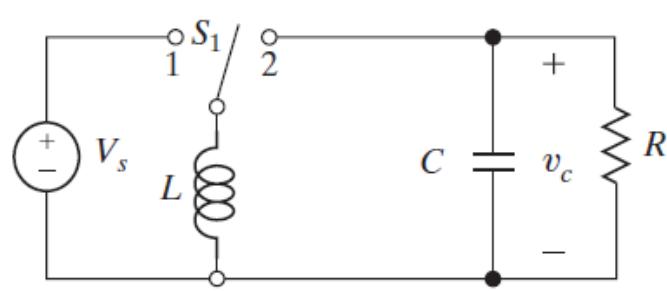


1. Buck-Boost Regulators

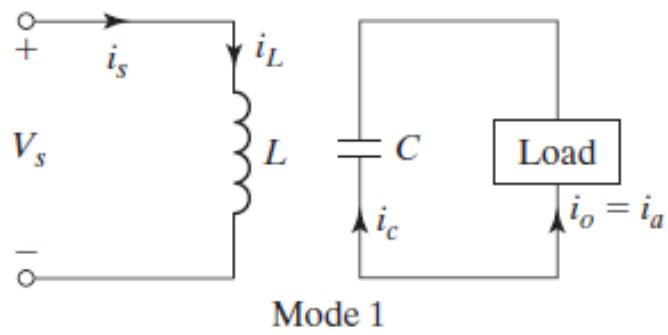
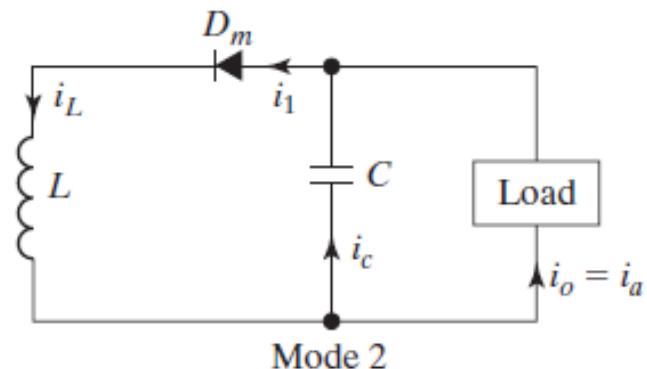
A buck-boost regulator provides an output voltage that may be less than or greater than the input voltage—hence the name “buck-boost”; the output voltage polarity is opposite to that of the input voltage. This regulator is also known as an inverting regulator. The circuit arrangement of a buck-boost regulator is shown in Figure.1 (a). Transistor Q1 acts as a controlled switch and diode Dm is an uncontrolled switch. They operate as two SPST current-bidirectional switches. The circuit in Figure.1(a) is often represented by two switches as shown in Figure.1(b).



(b) Switch representation

Figure.1: Buck-boost regulator with continuous i_L

The circuit operation can be divided into two modes. During mode 1, transistor Q_1 is turned on and diode D_m is reversed biased. The input current, which rises, flows through inductor L and transistor Q_1 . During mode 2, transistor Q_1 is switched off and the current, which was flowing through inductor L , would flow through L , C , D_m , and the load. The energy stored in inductor L would be transferred to the load and the inductor current would fall until transistor Q_1 is switched on again in the next cycle. The equivalent circuits for the modes are shown in Figure.2.



(c) Equivalent circuits

Figure.2: Two Mode

The waveforms for SteadyState voltages and currents of the buck-boost regulator are shown in Figure.3 for a continuous load current.

Assuming that the inductor current rises linearly from I_1 to I_2 in time t_1 ,

$$V_s = L \frac{I_2 - I_1}{t_1} = L \frac{\Delta I}{t_1}$$

$$t_1 = \frac{\Delta I L}{V_s}$$

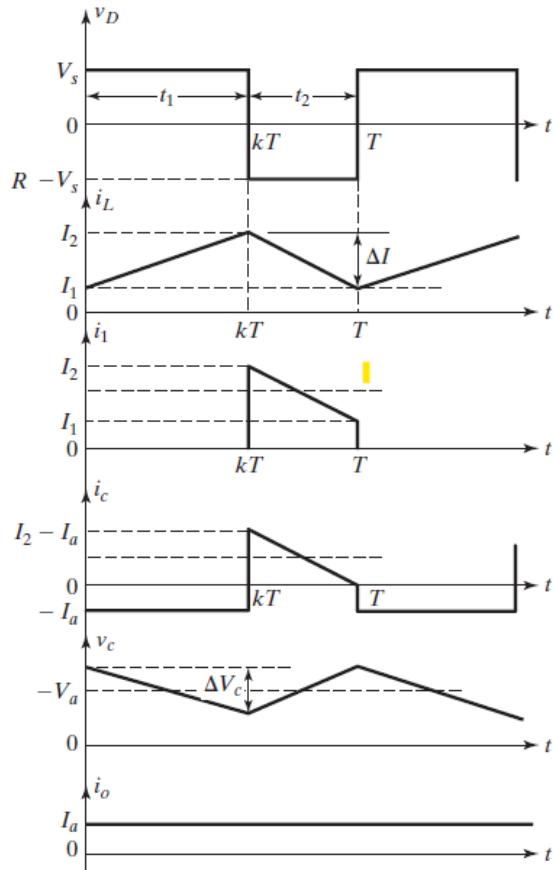
and the inductor current falls linearly from I_2 to I_1 in time t_2 ,

$$V_a = -L \frac{\Delta I}{t_2}$$

or

$$t_2 = \frac{-\Delta I L}{V_a}$$

where $\Delta I = I_2 - I_1$ is the peak-to-peak ripple current of inductor L



$$\Delta I = \frac{V_s t_1}{L} = \frac{-V_a t_2}{L}$$

Substituting $t_1 = kT$ and $t_2 = (1 - k)T$, the average output voltage is

$$V_a = -\frac{V_s k}{1 - k}$$

and the average input current I_s is related to the average output current I_a by

$$I_s = \frac{I_a k}{1 - k}$$

The peak-to-peak ripple current,

$$\Delta I = \frac{V_s V_a}{fL(V_a - V_s)}$$

or

$$\Delta I = \frac{V_s k}{fL}$$

The average inductor current is given by

$$I_L = I_s + I_a = \frac{kI_a}{1 - k} + I_a = \frac{I_a}{1 - k}$$

Peak-to-peak capacitor ripple voltage. When transistor Q1 is on, the filter Capacitor supplies the load current for $t = t_1$. The average discharging current of the capacitor is $I_c = -I_a$ and the peak-to-peak ripple voltage of the capacitor is

$$\Delta V_c = \frac{I_a k}{fC}$$

Condition for continuous inductor current and capacitor voltage. If I_L is the average inductor current, at the critical condition for continuous conduction the inductor ripple current $I = 2I_L$.

which gives the critical value of the inductor L_c as

$$L_c = L = \frac{(1 - k)R}{2f} \quad (5.96)$$

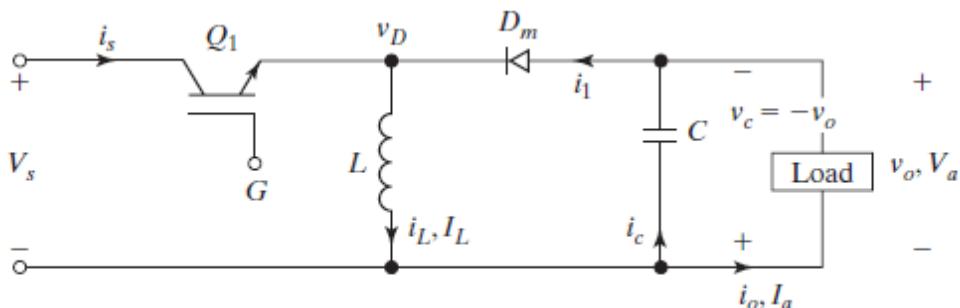
If V_c is the average capacitor voltage, at the critical condition for continuous conduction the capacitor ripple voltage $\Delta V_c = -2V_a$. Using Eq. (5.95), we get

$$-\frac{I_a k}{C f} = -2V_a = -2I_a R$$

which gives the critical value of the capacitor C_c as

$$C_c = C = \frac{k}{2fR} \quad (5.97)$$

Example.1: The buck-boost regulator in Figure has an input voltage of $V_s = 12$ V. The duty cycle $k = 0.25$ and the switching frequency is 25 kHz. The inductance $L = 150 \mu\text{H}$ and filter capacitance $C = 220 \mu\text{F}$. The average load current $I_a = 1.25$ A. Determine (a) the average output voltage, V_a ; (b) the peak-to-peak output voltage ripple, V_c ; (c) the peak-to-peak ripple current of inductor, I ; (d) the peak current of the transistor, I_p ; and (e) the critical values of L and C .



(a) Circuit diagram

Solution:

$V_s = 12 \text{ V}$, $k = 0.25$, $I_a = 1.25 \text{ A}$, $f = 25 \text{ kHz}$, $L = 150 \mu\text{H}$, and $C = 220 \mu\text{F}$.

a. From Eq. (5.86), $V_a = -12 \times 0.25 / (1 - 0.25) = -4 \text{ V}$.

b. From Eq. (5.95), the peak-to-peak output ripple voltage is

$$\Delta V_c = \frac{1.25 \times 0.25}{25,000 \times 220 \times 10^{-6}} = 56.8 \text{ mV}$$

c. From Eq. (5.92), the peak-to-peak inductor ripple is

$$\Delta I = \frac{12 \times 0.25}{25,000 \times 150 \times 10^{-6}} = 0.8 \text{ A}$$

d. From Eq. (5.89), $I_s = 1.25 \times 0.25 / (1 - 0.25) = 0.4167 \text{ A}$. Because I_s is the average of duration kT , the peak-to-peak current of the transistor,

$$I_p = \frac{I_s}{k} + \frac{\Delta I}{2} = \frac{0.4167}{0.25} + \frac{0.8}{2} = 2.067 \text{ A}$$

e. $R = \frac{-V_a}{I_a} = \frac{4}{1.25} = 3.2 \Omega$

From Eq. (5.96), we get $L_c = \frac{(1 - k)R}{2f} = \frac{(1 - 0.25) \times 3.2}{2 \times 25 \times 10^3} = 450 \mu\text{H}$.

From Eq. (5.97), we get $C_c = \frac{k}{2fR} = \frac{0.25}{2 \times 25 \times 10^3 \times 3.2} = 1.56 \mu\text{F}$.