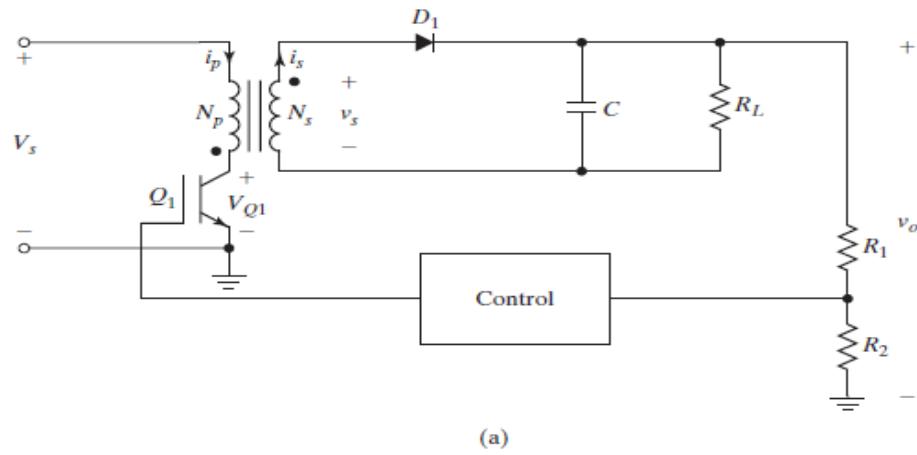
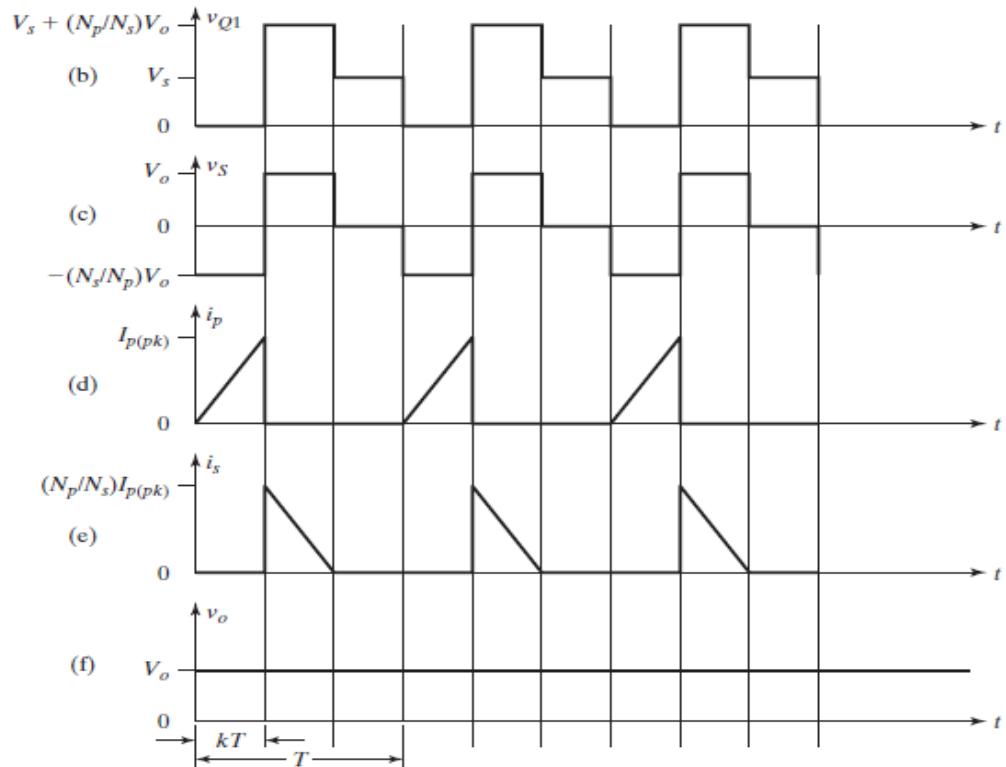


Flyback Converter

Figure .1 (a) shows the circuit of a flyback converter. There are two modes of operation: (1) mode 1 when switch Q1 is turned on, and (2) mode 2 when Q1 is turned off. Figure.1 (b-f) shows the steady-state waveforms under a discontinuous-mode operation.



(a)



It is assumed that the output voltage as shown in Figure 13.1f is ripple free.

Mode 1. This mode begins when switch Q1 is turned on and it is valid for $0 < t \leq kT$, where k is the duty-cycle ratio and T is the switching period. The voltage across the primary winding of the transformer is V_s . The primary current i_p starts to build up and stores energy in the primary winding. Due to the opposite polarity arrangement between the input and output windings of the transformer, diode D_1 is reverse biased. There is no energy transferred from the input to load RL . The output filter capacitor C maintains the output voltage and supplies the load current i_L . The primary current i_p that increases linearly is given by

$$i_p = \frac{V_s t}{L_p}$$

where L_p is the primary magnetizing inductance. At the end of this mode at $t = kT$, the peak primary current reaches a value equal to $I_{p(pk)}$ as given by

$$I_{p(pk)} = i_p(t = kT) = \frac{V_s k T}{L_p}$$

The peak secondary current $I_{se(pk)}$ is given by

$$I_{se(pk)} = \left(\frac{N_p}{N_s} \right) I_{p(pk)}$$

Mode 2. This mode begins when switch Q_1 is turned off. The polarity of the windings reverses due to the fact that i_p cannot change instantaneously. This causes diode D_1 to turn on and charges the output capacitor C and also delivers current to RL . The secondary current that decreases linearly is given by

$$i_{se} = I_{se(pk)} - \frac{V_o}{L_s} t$$

where L_s is the secondary magnetizing inductance. Under the discontinuous-mode operation, i_{se} decreases linearly to zero before the start of the next cycle.

Because energy is transferred from the source to the output during the time Interval 0 to kT only, the input power is given by

$$P_i = \frac{\frac{1}{2}L_p I_p^2(pk)}{T} = \frac{(kV_s)^2}{2fL_p} \quad (13.5)$$

For an efficiency of η , the output power P_o can be found from

$$P_o = \eta P_i = \frac{\eta (V_s k)^2}{2fL_p} \quad (13.6)$$

which can be equated to $P_o = V_o^2/R_L$ so that we can find the output voltage V_o as

$$V_o = V_s k \sqrt{\frac{\eta R_L}{2fL_p}} \quad (13.7)$$

Thus, V_o can be maintained constant by keeping the product $V_s k T$ constant. Because the maximum duty cycle k_{\max} occurs at minimum supply voltage $V_{s(\min)}$, the allowable k_{\max} for the discontinuous mode can be found from Eq. (13.7) as

$$k_{\max} = \frac{V_o}{V_{s(\min)}} \sqrt{\frac{2fL_p}{\eta R_L}} \quad (13.8)$$

Therefore, V_o at k_{\max} is then given by

$$V_o = V_{s(\min)} k_{\max} \sqrt{\frac{\eta R_L}{2fL_p}} \quad (13.9)$$

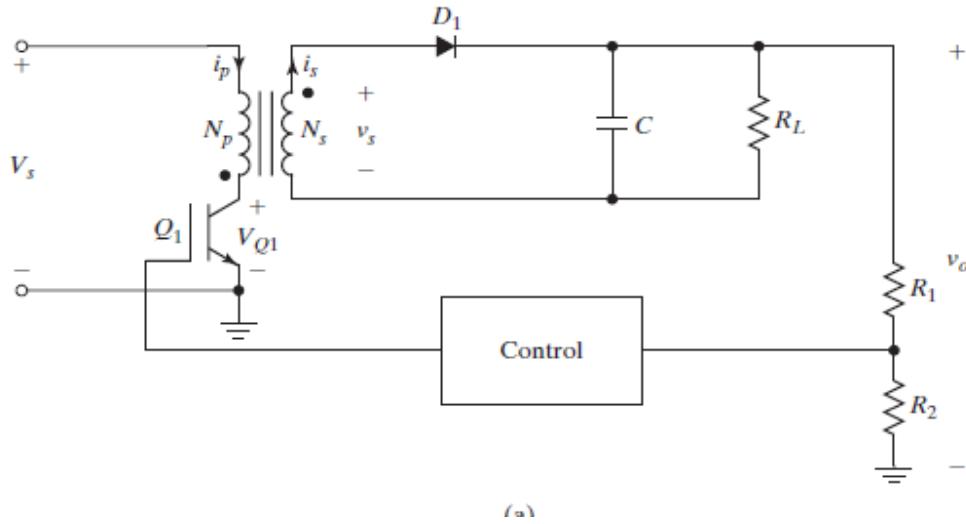
Because the collector voltage V_{Q1} of Q_1 is maximum when V_s is maximum, the maximum collector voltage $V_{Q1(\max)}$, as shown in Figure 13.1b, is given by

$$V_{Q1(\max)} = V_{s(\max)} + \left(\frac{N_p}{N_s} \right) V_o \quad (13.10)$$

The peak primary current $I_{p(pk)}$, which is the same as the maximum collector current $I_{C(\max)}$ of the power switch Q_1 , is given by

$$I_{C(\max)} = I_{p(pk)} = \frac{2P_i}{kV_s} = \frac{2P_o}{\eta V_s k} \quad (13.11)$$

Example.1: The average (or dc) output voltage of the flyback circuit in Figure is $V_o = 24$ V at a resistive load of $R = 0.8 \Omega$. The duty-cycle ratio is $k = 50\%$ and the switching frequency is $f = 1$ kHz. The on-state voltage drops of transistors and diodes are $V_t = 1.2$ V and $V_d = 0.7$ V, respectively. The turns ratio of the transformer is $a = N_s/N_p = 0.25$. Determine (a) the average input current I_s , (b) the efficiency, (c) the average transistor current I_A , (d) the peak transistor current I_p , (e) the rms transistor current I_R , (f) the open-circuit transistor voltage V_{oc} , and (g) the primary magnetizing inductor L_p . Neglect the losses in the transformer and the ripple current of the load.



Solution:

$$a = N_s/N_p = 0.25 \text{ and } I_o = V_o/R = 24/0.8 = 30 \text{ A.}$$

- The output power $P_o = V_o I_o = 24 \times 30 = 720$ W. The secondary voltage $V_2 = V_o + V_d = 24 + 0.7 = 24.7$ V. The primary voltage $V_1 = V_2/a = 24.7/0.25 = 98.8$ V. The input voltage $V_s = V_1 + V_t = 98.8 + 1.2 = 100$ and the input power is

$$P_i = V_s I_s = 1.2 I_A + V_d I_o + P_o$$

Substituting $I_A = I_s$ gives

$$I_s(100 - 1.2) = 0.7 \times 30 + 720$$

$$I_s = \frac{741}{98.8} = 7.5 \text{ A}$$

- b. $P_i = V_s I_s = 100 \times 7.5 = 750 \text{ W}$. The efficiency $\eta = 7.5/750 = 96.0\%$.
- c. $I_A = I_s = 7.5 \text{ A}$.
- d. $I_p = 2I_A/k = 2 \times 7.5/0.5 = 30 \text{ A}$.
- e. $I_R = \sqrt{k/3}I_p = \sqrt{0.5/3} \times 30 = 12.25 \text{ A}$, for 50% duty cycle.
- f. $V_{oc} = V_s + V_2/a = 100 + 24.7/0.25 = 198.8 \text{ V}$.
- g. Using Eq. (13.2) for I_p gives $L_p = V_s k/fI_p = 100 \times 0.5/(1 \times 10^{-3} \times 30) = 1.67 \text{ mH}$.