

Chapter One

Vectors Analysis

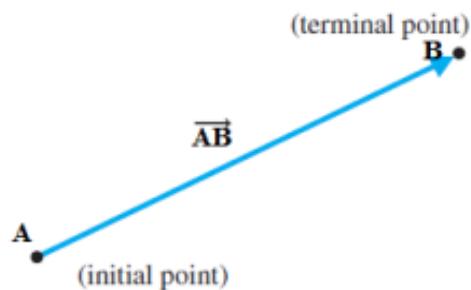
Many physical quantities such as area, length, mass and temperature are completely described once the magnitude of the quantity is given, such quantities are called **scalars**. Other physical quantities called **vectors** are not completely determined until both a magnitude and a direction are specified such as force, velocity, and acceleration.

Component Form

A quantity such as force, displacement, or velocity is called a **vector** and is represented by a **directed line segment**.

DEFINITIONS:

The vector represented by the directed line segment \overrightarrow{AB} has **initial point A** and **terminal point B**.



Vectors in 2-dimensional coordinates

If **A** represent by (x_1, y_1) and

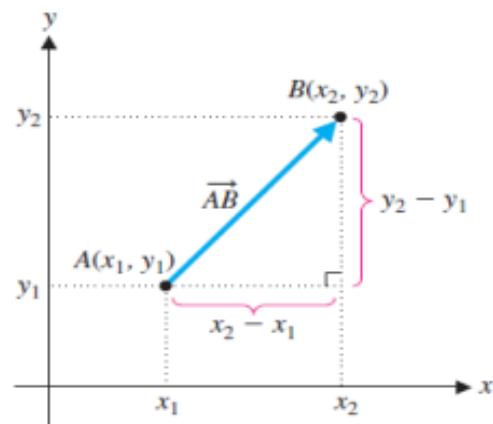
B represent by (x_2, y_2)

Vector is represent by

$$\overrightarrow{AB} = \langle v_1, v_2 \rangle$$

Where $v_1 = x_2 - x_1$

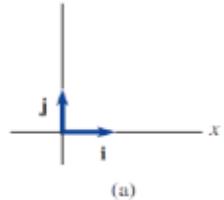
and $v_2 = y_2 - y_1$



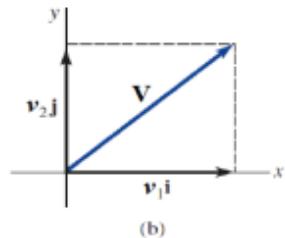
or another method to represent the vector

If \mathbf{i}, \mathbf{j} are standard basis vectors, then

$$\mathbf{i} = \langle 1, 0 \rangle \quad \text{and} \quad \mathbf{j} = \langle 0, 1 \rangle,$$



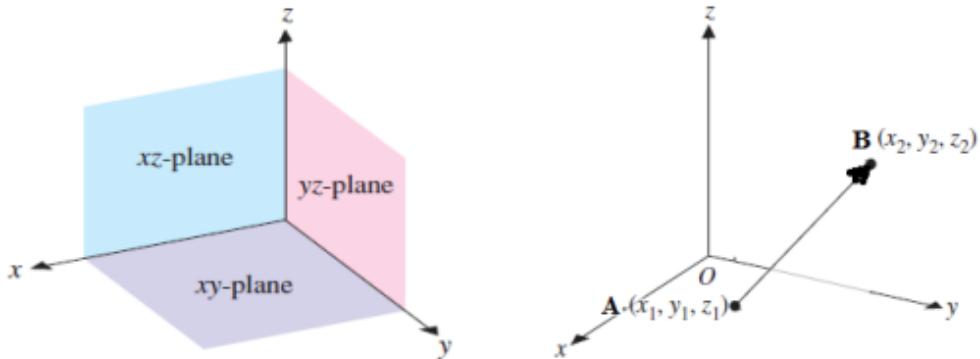
$$\overrightarrow{AB} = \mathbf{V} = v_1\mathbf{i} + v_2\mathbf{j}.$$



Note: Zero vector

$$\mathbf{V} = \langle 0, 0 \rangle$$

Vectors in 3-dimensional coordinates (vector in space)



If A represent by (x_1, y_1, z_1) and B represent by (x_2, y_2, z_2)
Vector is represent by

$$\overrightarrow{AB} = \langle v_1, v_2, v_3 \rangle$$

Where $v_1 = x_2 - x_1$, $v_2 = y_2 - y_1$ and $v_3 = z_2 - z_1$

or another method to represent the vector

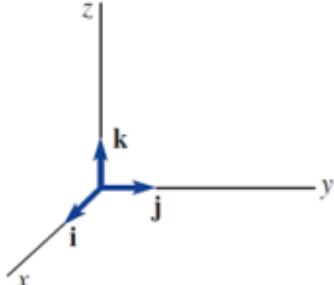
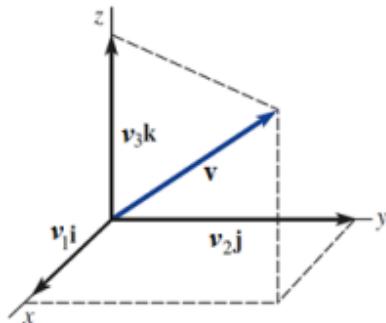
If i, j, k are standard basis vectors, then

$$i = \langle 1, 0, 0 \rangle,$$

$$j = \langle 0, 1, 0 \rangle,$$

$$k = \langle 0, 0, 1 \rangle.$$

$$\overrightarrow{AB} = V = v_1 i + v_2 j + v_3 k$$



Note: Zero vector

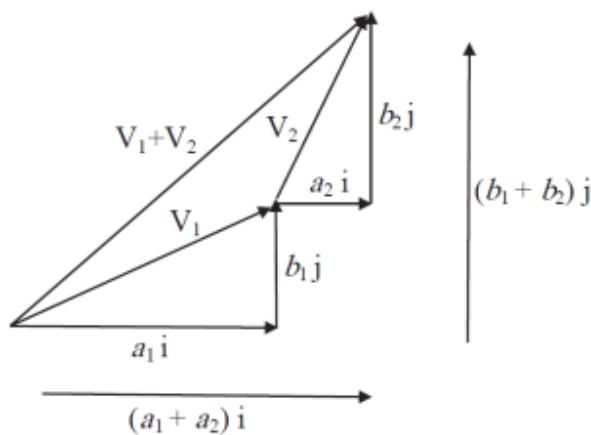
$$V = \langle 0, 0, 0 \rangle$$

Algebra of vector:

Algebraic addition:

$$\text{Let } V_1 = a_1 i + b_1 j$$

$$V_2 = a_2 i + b_2 j$$



Two vector may be added algebraically by adding their corresponding scalar components:

$$V_1 + V_2 = (a_1 + a_2)i + (b_1 + b_2)j$$

Example: If $V_1 = 2i - 5j$ and $V_2 = 4i + 2j$, find $V_1 + V_2$

solution:

$$\begin{aligned} V_1 + V_2 &= (2i - 5j) + (4i + 2j) \\ &= (2 + 4)i + (-5 + 2)j \\ &= 6i - 3j \end{aligned}$$

H.W: The vector $u = 4i + 3j$ and $v = 5i + 6j$, find $u + v$

Subtraction:

$$\text{Let } V_1 = a_1i + b_1j$$

$$V_2 = a_2i + b_2j$$

$$V_1 - V_2 = (a_1 - a_2)i + (b_1 - b_2)j$$

Example: If $V_1 = 7i + 3j$ and $V_2 = 2i - 6j$, find $V_1 - V_2$

solution:

$$\begin{aligned} V_1 - V_2 &= (7i + 3j) - (2i - 6j) \\ &= (7 - 2)i + (3 - (-6))j \\ &= 5i + 9j \end{aligned}$$

H.W: The vector $u = 9i + 6j$ and $v = 5i + 2j$, find $u - v$

Length of the vector (magnitude):

The length of the vector is $V = ai + bj$ usually denoted by $|V|$, which may be read (the magnitude of V):

$$|V| = |ai + bj| = \sqrt{a^2 + b^2}$$

Example: find length of vector $V = 3i - 5j$

solution:

$$|V| = |3i - 5j| = \sqrt{(3)^2 + (-5)^2} = \sqrt{9 + 25} = \sqrt{34}$$

H.W: The vector $u = 5i + 2j$, find the magnitude (length) of the vector u

Unit vector

Any vector whose length is equal to the unit of length used along the coordinate axes is called a unit vector.

Direction:

$$\text{Direction of the vector } V = \frac{V}{|V|}$$

Example: find the direction of $A = 3i - 4j$

solution:

$$\text{Direction of } A = \frac{A}{|A|} = \frac{3i - 4j}{\sqrt{(3)^2 + (-4)^2}} = \frac{3i - 4j}{\sqrt{25}} = \frac{3}{5}i - \frac{4}{5}j$$

Properties of vectors

Let u, v, w be vectors and a, b be scalars

$$1. u + v = v + u \quad 2. (u + v) + w = u + (v + w)$$

$$3. u + 0 = u \quad 4. u + (-u) = 0$$

$$5. 0u = 0 \quad 6. 1u = u$$

$$7. a(bu) = (ab)u \quad 8. a(u + v) = au + av$$

$$9. (a + b)u = au + bu$$

Note : Zero vector $\langle 0, 0 \rangle$ or $\langle 0, 0, 0 \rangle$

Example: For vectors $a = \langle 2, 1 \rangle$ and $b = \langle 3, -2 \rangle$, compute (a) $a + b$, (b) $2a$, (c) $2a + 3b$, (d) $2a - 3b$ and (e) $|2a - 3b|$.

Solution:

$$(a) \quad a + b = \langle 2, 1 \rangle + \langle 3, -2 \rangle = \langle 2 + 3, 1 - 2 \rangle = \langle 5, -1 \rangle.$$

$$(b) \quad 2a = 2\langle 2, 1 \rangle = \langle 2 \cdot 2, 2 \cdot 1 \rangle = \langle 4, 2 \rangle.$$

$$(c) \quad 2a + 3b = 2\langle 2, 1 \rangle + 3\langle 3, -2 \rangle = \langle 4, 2 \rangle + \langle 9, -6 \rangle = \langle 13, -4 \rangle.$$

$$(d) \quad 2a - 3b = 2\langle 2, 1 \rangle - 3\langle 3, -2 \rangle = \langle 4, 2 \rangle - \langle 9, -6 \rangle = \langle -5, 8 \rangle.$$

$$(e) \quad |2a - 3b| = |(-5, 8)| = \sqrt{25 + 64} = \sqrt{89}.$$

Vector Function and Motion

The most important vector function is the radius vector

$$\bar{R}(t) = X(t)i + y(t)j + Z(t)k$$

Where $\bar{R}(t)$:- is the position vector from the origin to the point $P[x(t), y(t), z(t)]$. That gives the position at time t of a particle moving through space.

The Derivative of a Vector Function

If $x(t), y(t)$ & $z(t)$ are functions of variable ,

$$\bar{F}(t) = X(t)i + y(t)j + Z(t)k$$

Is a vector function of t , $\bar{F}(t)$ may be position vector of a moving body.

$$\text{And } \dot{\bar{F}}(t) = \frac{d\bar{F}}{dt} = \frac{dx}{dt}i + \frac{dy}{dt}j + \frac{dz}{dt}k$$

Is called the derivative of \bar{F} with respect to t .

Position, Velocity, Speed, and Acceleration:-

If $R(t) = x(t)i + y(t)j + z(t)k$, is the position vector of a body in space,

Definition :- Position $R(t) = x(t)i + y(t)j + z(t)k$

$$\text{Velocity } \bar{v}(t) = dR / dt$$

$$\text{Speed } |\bar{v}|$$

$$\text{Direction } \frac{\bar{v}}{|\bar{v}|}$$

$$\text{Acceleration } \frac{d^2R}{dt^2}$$

Example:

Find $\frac{d\bar{F}}{dt}$ at $t = \pi/3$ if $\bar{F}(t) = (\sin t)i + (\ln t)j + (\tan t)k$

Solution:

$$\frac{d\bar{F}}{dt} = (\cos t)i + \left(\frac{1}{t}\right)j + (\sec^2 t)k$$

$$\therefore F' \left(\frac{\pi}{3}\right) = \frac{1}{2}i + \frac{3}{\pi}j + 4k$$

Example:

If $\bar{R}(t) = (250t)i + (250\sqrt{3}t - 4.9t^2)j$, is the position vector of the projectile, find the velocity vector of projectile.

Solution:

$$d\bar{R}/dt = \bar{v}(t) = \text{velocity vector of projectile}$$

$$d\bar{R}/dt = 250i + (250\sqrt{3}t - 9.8t)j$$

Example:

If $\bar{R}(t) = (3\cos t)i + (3\sin t)j + t^2k$, is the position vector , find the speed and direction when $t=2$.

Solution:

$$\text{Direction: } \frac{\bar{v}(2)}{|\bar{v}(2)|} = -\left(\frac{3}{5}\sin 2\right)i + \left(\frac{3}{5}\cos 2\right)j + \frac{4}{5}k$$