



## **COLLEGE OF ENGINEERING AND TECHNOLOGIES**

---

### **ALMUSTAQBAL UNIVERSITY**

# **Power Engineering**

## **EET 305**

### **Lecture 6**

**- Comparison of Conductor Materials in overhead systems I -  
(2025 - 2026)**

**Dr. Zaidoon AL-Shammary**  
**Lecturer / Researcher**

**[zaidoon.waleed@mustaqbal-college.edu.iq](mailto:zaidoon.waleed@mustaqbal-college.edu.iq)**

Overhead transmission and distribution systems use conductors to carry electrical energy across distances.

Selecting the appropriate conductor material is crucial for:

- Electrical efficiency.
- Mechanical strength.
- Cost optimization.
- Durability and reliability.

| Type | Material Name                               | Typical Use                       |
|------|---------------------------------------------|-----------------------------------|
| 1    | Copper (Cu)                                 | Urban distribution, short spans   |
| 2    | Aluminium (Al)                              | Transmission & distribution lines |
| 3    | ACSR (Aluminium Conductor Steel Reinforced) | Long spans & high-voltage lines   |
| 4    | AAAC (All Aluminium Alloy Conductor)        | Coastal and corrosive areas       |

## Advantages:

- **Excellent Conductivity:** Higher electrical conductivity than aluminum, allowing for smaller cross-sections.
- **Tensile Strength:** Stronger and more durable, which can reduce sag in wiring.
- **Lower Resistance:** Reduced power losses over long distances.

## Disadvantages:

- **Heavy:** Heavier than aluminum, necessitating more robust support structures.
- **Cost:** Higher material costs compared to aluminum.
- **Corrosion Susceptibility:** Can corrode if exposed to certain environments, especially if not insulated properly.

## Advantages:

- **Lightweight:** Reduces tower loads and eases handling during installation.
- **Corrosion Resistance:** Typically resistant to corrosion due to the formation of a protective oxide layer.
- **Cost-Effective:** Generally less expensive than copper.
- **High Conductivity:** Good conductivity with lower thermal expansion.

## Disadvantages:

- **Lower Strength:** Weaker than copper, needing larger diameters for the same current-carrying capacity.
- **Mechanical Handling:** Prone to mechanical damage if not handled properly.

## Advantages:

- **Hybrid Structure:** Combines aluminum and steel, providing the best of both worlds (low weight and high tensile strength).
- **Cost-Effectiveness:** Easier to install due to lower weight compared to copper.
- **Corrosion Resistance:** The aluminum outer layer protects against environmental factors.

## Disadvantages:

- **Complexity in Design:** May require specific structural considerations due to the steel core.
- **Potential for Bimetallic Corrosion:** If not properly designed, connections can suffer from corrosion issues.

## Advantages:

- **Enhanced Properties:** Designed to balance weight, strength, and conductivity.
- **High Thermal Resistance:** Can withstand higher temperatures without sagging.

## ➤ Disadvantages:

- **Cost:** Often more expensive due to specialized manufacturing.
- **Limited Availability:** May not be as readily available as traditional materials.

# Summary Table

| Material | Advantages                                       | Disadvantages                                |
|----------|--------------------------------------------------|----------------------------------------------|
| Aluminum | Lightweight, corrosion-resistant, cost-effective | Lower strength, prone to mechanical damage   |
| Copper   | Excellent conductivity, tensile strength         | Heavy, higher cost, susceptible to corrosion |
| ACSR     | Combines strengths of aluminum and steel         | Complex design, risk of bimetallic corrosion |
| Alloys   | Enhanced properties, high thermal resistance     | Higher cost, limited availability            |

- Copper: Excellent corrosion resistance.
- Aluminum: Forms protective oxide layer; less durable in coastal areas.
- AAAC: Best corrosion resistance among aluminum-based types.
- ACSR: Steel core may corrode; galvanization required.

- Each conductor material has unique properties suited for specific applications in overhead power systems.
- Aluminum and ACSR are popular for their balance between weight and cost, while copper is chosen for its superior conductivity and strength.
- The choice depends on factors like installation conditions, environmental factors, and budget constraints.

