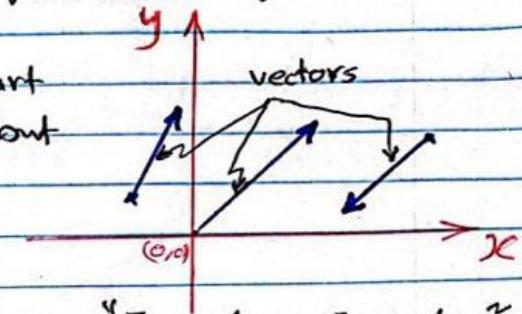


Vectors

الكتل

- The vector is only two pieces of information:
 - 1- Direction
 - 2- Length or Magnitude
 - الكتل والاتجاه : لذا الكتل هي الاتجاه
- We can graph a vector by an arrow that we can visualize on x-y plane and we can capture it by the arrow length and angle
- Vectors on graph could start from not just an origin, but from anywhere -



"Examples of Vectors"

Examples of Vectors

- To answer the question "What is the current temperature?" we use a single number (scalar)'s likewise the question about a mass ;
- While to answer the question "What is the current velocity of the wind?", we need more than just a single number. We need magnitude (speed) and direction - This where vectors come to handy.

Position, displacement, velocity, acceleration, force, momentum & torque are all physical quantities that can be represented mathematically by vectors.

Vector Denoting

- Vectors are writing with an arrow on top on equations -

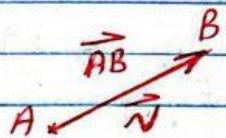
Ex)

Velocity vector $\rightarrow \vec{v}$

- Force vector $\rightarrow \vec{F}$

- \oplus Note) Any variable symbol with no arrow on top means scalar -

- A vector can be geometrically represented by a direction line segment with a head & a tail ;



so vector \vec{AB} is a vector from point A to B -

- Also, we can denote vector \vec{AB} by a small case letter \vec{v}

- The length of the arrow \vec{AB} corresponds to the magnitude of the vector -

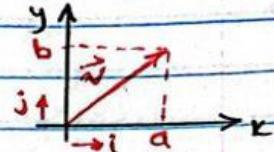
- The arrow points in the direction of the vector -

How to represent the vector mathematically \Rightarrow

Vector in plane \Rightarrow Tip with tail

We can write vectors as columns. Let us take a very important special vector as example:

$$i = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad j = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

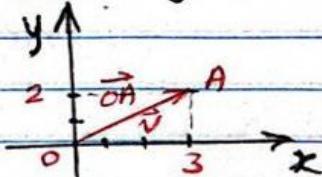


Any vector in the xy-plane can be written in terms of $i \leq j$ using the triangle law \leq scalar multiplication.

$$\vec{v} = a\vec{i} + b\vec{j} = a\begin{pmatrix} 1 \\ 0 \end{pmatrix} + b\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$

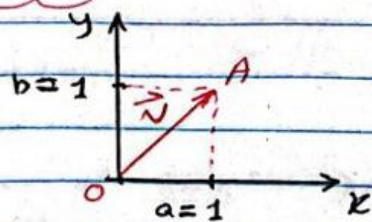
Ex1

$$\begin{pmatrix} 3 \\ 2 \end{pmatrix} = 3\begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2\begin{pmatrix} 0 \\ 1 \end{pmatrix} = 3i + 2j$$



Notes

* IF $a = b = 1$, then $\vec{v} = i + j$ is a "unit vector"

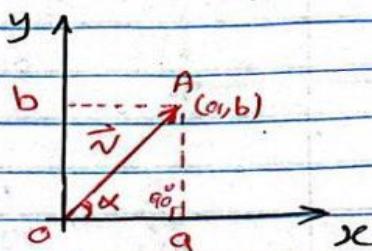


Finding the length/magnitude and the direction of vector $\mathbf{z} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$

IF $\vec{v} = a\hat{i} + b\hat{j}$, then the length/magnitude of vector \vec{v} is $\sqrt{a^2 + b^2}$ y ↑

$$|v| = \sqrt{a^2 + b^2} \quad (2)$$

- It's a Pythagorean theorem



$$\begin{aligned} a &= |v| \cos \alpha \\ b &= |v| \sin \alpha \end{aligned} \quad \text{--- (3)}$$

$$\tan \alpha = \frac{b}{a}$$

Substitute eq. (3) in (1) yields;

$$\vec{v} = |v|(\cos \alpha \mathbf{i} + \sin \alpha \mathbf{j})$$

\vec{v} ~ vector symbol

$|\mathbf{v}|$ - vector length

i, j - unit vector components (basis/fundamental vector components)

α — vector angle with x -axis

Ex] Find a vector in plane of length (7 units) & makes angle (35°) with x-axis?

Solutions

$$\text{since } |\vec{v}| = 7 \Leftrightarrow \alpha = 35^\circ$$

$$\therefore \vec{v} = 7 \text{ m}(\cos 35^\circ \hat{i} + \sin 35^\circ \hat{j})$$

→ $\sqrt{3} = 5.72 \text{ cm} \times 4.6$

Ans

Ex) Find the angle between the vector

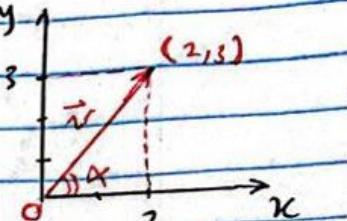
$\vec{v} = 2i + 3j$ and the x-axis

Solution

$$|\vec{v}| = \sqrt{a^2 + b^2} \quad ; \quad a = 2$$

$$b = 3$$

$$|\vec{v}| = \sqrt{2^2 + 3^2} = \sqrt{13}$$



$$a = |\vec{v}| \cos \alpha \implies \cos \alpha = \frac{a}{|\vec{v}|} = \frac{2}{\sqrt{13}}$$

$$\therefore \alpha = \cos^{-1} \frac{2}{\sqrt{13}} = \boxed{56.3^\circ} \quad \underline{\text{Ans}}$$

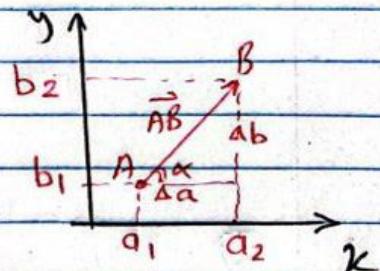
Vectors with tail not in origin so

$(a_1, a_2) \in \text{and } (b_1, b_2) \in \text{points}$

Vectors can be start not from the origin, but from any where like A to B

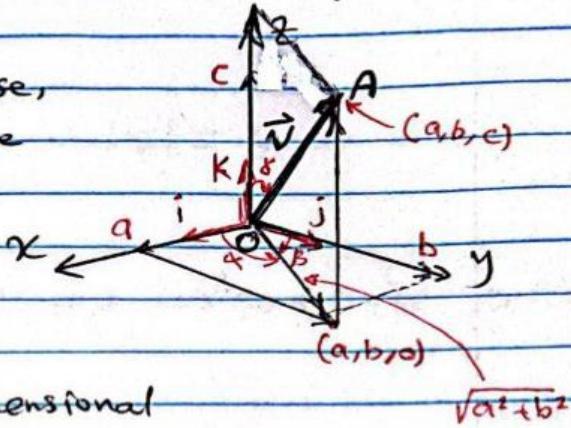
$$\therefore \vec{AB} = a_1 i + a_2 j$$

$$\vec{AB} = (a_2 - a_1) i + (b_2 - b_1) j$$



Vectors in a space

- They could be in three or higher dimensions
- Similar to the 2-D case, but we now have three basis vectors i, j & k .
From these three components unit vectors we can describe any vector in three-dimensional space -



$$\vec{V} = \vec{OA} = ai + bj + ck$$

where :-

i, j, k = Basis or Fundamental unit vector.

a, b, c = Directional numbers (scalars) -

α, β, γ = Directional angles.

$$|V| = |OA| = \sqrt{a^2 + b^2 + c^2}$$

$$a = |V| \cos \alpha$$

$$b = |V| \cos \beta$$

$$c = |V| \cos \gamma$$

$$\frac{\vec{V}}{|V|} = \cos \alpha i + \cos \beta j + \cos \gamma k \quad \text{= unit vector in the direction of } \vec{V}$$

And,

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

Ex] Find a vector in space of length (5 units) that makes angles (70°) with x-axis, (85°) with y-axis?

Solution

$$\alpha = 70^\circ, \beta = 85^\circ, |v| = 5$$
$$x = ?, \vec{v} = ?$$

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \Rightarrow \cos^2 70 + \cos^2 85 + \cos^2 \gamma = 1$$

$$\therefore \cos \gamma = 0.935$$

$$\therefore \vec{v} = |v| (\cos \alpha \mathbf{i} + \cos \beta \mathbf{j} + \cos \gamma \mathbf{k})$$
$$= 5 (\cos 70 \mathbf{i} + \cos 85 \mathbf{j} + 0.935 \mathbf{k})$$
$$\boxed{\vec{v} = 1.7 \mathbf{i} + 0.436 \mathbf{j} + 4.675 \mathbf{k}}$$

Ans

Ex] Find the angle between the vector $\vec{v} = -4 \mathbf{i} + 5 \mathbf{j} + \mathbf{k}$ and the \mathbf{k} -axis?

Solution

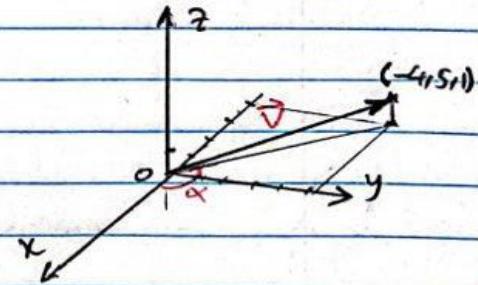
$$a = -4, b = 5, c = 1$$

$$|v| = \sqrt{a^2 + b^2 + c^2}$$

$$|v| = \sqrt{(-4)^2 + (5)^2 + (1)^2} = \sqrt{42}$$

$$\cos \alpha = \frac{a}{|v|} \Rightarrow \alpha = \cos^{-1} \frac{a}{|v|} = \cos^{-1} \frac{-4}{\sqrt{42}}$$

$$\boxed{\alpha = 128^\circ}$$



Scalar product \Rightarrow (Dot product)
مُرْبِّع المَرْبُّع

Let $\vec{A} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$

And $\vec{B} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k}$

Then, $(\vec{A} \cdot \vec{B}) = |\vec{A}| |\vec{B}| \cos \theta$

where θ is the angle between $\vec{A} \leftarrow \vec{B}$

Properties :-

1- $\vec{A} \cdot \vec{A} = |\vec{A}|^2$

2- $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A} = a_1 b_1 + a_2 b_2 + a_3 b_3$

3- $\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} + \sqrt{b_1^2 + b_2^2 + b_3^2}}$

4- $\vec{A} \perp \vec{B} \Rightarrow \vec{A} \cdot \vec{B} = 0$ [Orthogonal Vectors]
 $\vec{a} \cdot \vec{b} = 1 \Rightarrow \theta = 90^\circ$

5- $a_i + b_j \perp b_i - a_j$

Ex) Find the angle " θ " between $\vec{A} = \vec{i} - 2\vec{j} - 2\vec{k}$ \leftarrow
 $\vec{B} = 6\vec{i} + 3\vec{j} + 2\vec{k}$?

Solution

$$\vec{A} \cdot \vec{B} = (1 \cdot 6) + (-2 \cdot 3) + (-2 \cdot 2) = \boxed{-4}$$

$$|\vec{A}| = \sqrt{1^2 + (-2)^2 + (-2)^2} = \sqrt{9} = \boxed{3} \quad \Rightarrow |\vec{A}| |\vec{B}| = \boxed{21}$$

$$|\vec{B}| = \sqrt{6^2 + 3^2 + 2^2} = \sqrt{49} = \boxed{7} \quad \Rightarrow |\vec{A}| |\vec{B}| = \boxed{21}$$

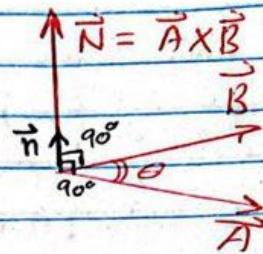
$$\therefore \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} \Rightarrow \cos^{-1} \frac{-4}{21} \approx \boxed{101^\circ} \quad \underline{\text{Ans}}$$

Vector Product \Rightarrow (Cross product)

Normal Vector is what yields from vector product or cross product.

$$\vec{N} = \vec{A} \times \vec{B} = \vec{n} |A| |B| \sin\theta$$

where \vec{n} is a normal unit vector



$$\vec{A} \times \vec{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} ; \text{ where, } \vec{A} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} \\ \vec{B} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$$

Properties \Rightarrow

$$1 - \vec{A} \times \vec{A} = 0 \rightarrow \sin 0 = 0$$

$$2 - \vec{A} \times \vec{B} = - \vec{B} \times \vec{A}$$

$$3 - \vec{A} \parallel \vec{B} \Rightarrow \vec{A} \times \vec{B} = 0 \rightarrow \sin 0 = 0$$

$$4 - \text{Area of } \triangle ABC = \frac{1}{2} |\vec{A} \times \vec{B}|$$

Ex) Find $\vec{A} \times \vec{B} \Leftarrow \vec{B} \times \vec{A}$ if

$$\vec{A} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$$

$$\vec{B} = -4\mathbf{i} + 3\mathbf{j} + \mathbf{k}$$

Solutions

$$\vec{A} \times \vec{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 1 \\ -4 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & \mathbf{i} \\ 3 & 1 & -4 \\ 1 & 1 & -4 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 1 & \mathbf{j} \\ 3 & 1 & -4 \\ 1 & 1 & -4 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 1 & \mathbf{k} \\ 3 & 1 & -4 \\ 1 & 1 & -4 \end{vmatrix} \mathbf{k}$$
$$= (1 \times 1 - 3 \times 1) \mathbf{i} - (2 \times 1 - (-4 \times 1)) \mathbf{j} + (2 \times 3 - (-4 \times 1)) \mathbf{k}$$

$$\boxed{\vec{A} \times \vec{B} = -2\mathbf{i} - 6\mathbf{j} + 10\mathbf{k}}$$

but,

$$\vec{B} \times \vec{A} = -\vec{A} \times \vec{B} = \boxed{2\mathbf{i} + 6\mathbf{j} - 10\mathbf{k}}$$

Triple product $\Leftrightarrow \vec{A} \cdot (\vec{B} \times \vec{C})$

A-Scalar triple product is

$$\boxed{\vec{A} \cdot (\vec{B} \times \vec{C}) = (\vec{A} \times \vec{B}) \cdot \vec{C}}$$

Note

1- Box volume is $\Rightarrow V_{\text{box}} = |\vec{A} \cdot \vec{B} \times \vec{C}|$

$$V_{\text{box}} = |\vec{A} \cdot \vec{B} \times \vec{C}|$$

2- Pyramid volume is $\Rightarrow V_{\text{pyr}} = \frac{1}{6} |\vec{A} \cdot \vec{B} \times \vec{C}|$

$$V_{\text{pyr}} = \frac{1}{6} |\vec{A} \cdot \vec{B} \times \vec{C}|$$

B-Vector triple product \Leftrightarrow

$$\boxed{\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \cdot \vec{C}) \vec{B} - (\vec{A} \cdot \vec{B}) \vec{C}}$$

Note

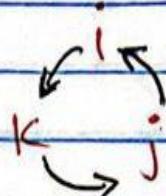
$$i \cdot i = 1, i \cdot j = 0, i \cdot k = 0; j \cdot i = 0, j \cdot j = 1, j \cdot k = 0; k \cdot i = 0, k \cdot j = 0, k \cdot k = 1$$

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$$

$$\mathbf{i} \times \mathbf{j} = \mathbf{k}$$

$$\mathbf{j} \times \mathbf{k} = \mathbf{i}$$

$$\mathbf{k} \times \mathbf{i} = \mathbf{j}$$



HW #2

1- Find the length & direction of these vectors & the angles make with the x-axis?

a- $5\mathbf{i} + 12\mathbf{j}$

b- $\sqrt{3}\mathbf{i} + \mathbf{j}$

2- Find a vector 6 units long in the direction of $\vec{A} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$

3- Find the area of the triangle whose vertices are $A(1, -1, 0)$, $B(2, 1, -1)$, $C(1, 1, 2)$?

4- If $\vec{A} = 2\mathbf{i} - \mathbf{j}$ & $\vec{B} = \mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$,

Find $\vec{A} \times \vec{B}$, then calculate $(\vec{A} \times \vec{B}) \cdot \vec{A}$?

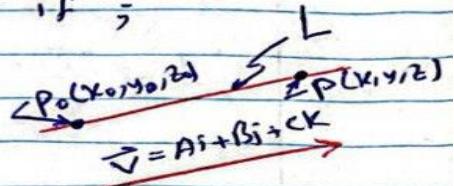
Equation of line in a space

IF L is a line in a space that passes through a point $P_0(x_0, y_0, z_0)$ & it parallel to a Vector $\vec{v} = Ai + Bj + Ck$, Then $P(x, y, z)$ is any point lies on L only if ;

$$\overrightarrow{P_0P} = t\vec{v}$$

Where ;

t — time parameter



so eq=① can be written as ;

$$(x - x_0)i + (y - y_0)j + (z - z_0)k = t(Ai + Bj + Ck)$$

$$x - x_0 = At$$

$$y - y_0 = Bt$$

$$z - z_0 = Ct$$

$$x = At + x_0$$

$$y = Bt + y_0$$

$$z = Ct + z_0$$

Eq = of
line is
a space

Ex 1

Find parametric equations for the line through the point $(-2, 0, 4)$ parallel to the vector

$$\vec{v} = 2i + 4j - 2k$$

solution

$$P_0(x_0, y_0, z_0) = (-2, 0, 4)$$

$$Ai + Bj + Ck = 2i + 4j - 2k$$

$$\therefore \boxed{x = 2t - 2}$$

$$\boxed{y = 4t}$$

$$\boxed{z = -2t + 4}$$

Ex]

Find parametric equations for line through the points $P(-3, 2, -3)$ & $Q(1, -1, 4)$
(solution)

$$\vec{PQ} = (1 - (-3)) \mathbf{i} + (-1 - 2) \mathbf{j} + (4 - (-3)) \mathbf{k}$$

$$\vec{PQ} = 4\mathbf{i} - 3\mathbf{j} + 7\mathbf{k} = [A\mathbf{i} + B\mathbf{j} + C\mathbf{k}]$$

* Let $(x_0, y_0, z_0) = (-3, 2, -3)$

$$\therefore [x = 4t - 3] ; [y = -3t + 2] ; [z = 7t - 3]$$

or,

* Let $(x_0, y_0, z_0) = (1, -1, 4)$

$$\therefore [x = 4t + 1] ; [y = -3t + 1] ; [z = 7t + 4]$$

Equation of the plane :

General form

To find the eqs of the plane that passes through the point $P_0(x_0, y_0, z_0)$ & its normal vector is $\vec{N} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$

Let $P(x, y, z)$ be any point in the plane

$$\vec{P_0P} = (x - x_0)\mathbf{i} + (y - y_0)\mathbf{j} + (z - z_0)\mathbf{k}$$

$$\vec{P_0P} \perp \vec{N} \Rightarrow \vec{P_0P} \cdot \vec{N} = 0$$

$$\Rightarrow a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$\Rightarrow ax + by + cz = ax_0 + by_0 + cz_0$$

or $\boxed{ax + by + cz = d}$ ← Equation of the plane

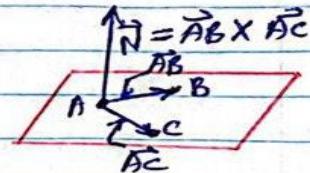


Ex 1

Find the equation of the plane having the points $A(2, 3, 5)$, $B(7, 2, 1)$ & $C(1, 1, 1)$

Solution

نوجة ملخص دليل ايجار
من عكست ايجار
متحدة ايجار
 \vec{AC} & \vec{AB} ملحوظ



وكلفتنا ايجار \vec{N}
Cross product vector product $\vec{AB} \times \vec{AC} = \vec{N}$
 $\vec{AB} \times \vec{AC} = \vec{N}$

$$\vec{AB} = (7-2)\mathbf{i} + (2-3)\mathbf{j} + (1-5)\mathbf{k}$$

$$\boxed{\vec{AB} = 5\mathbf{i} - \mathbf{j} - 4\mathbf{k}}$$

$$\vec{AC} = (1-2)\mathbf{i} + (1-3)\mathbf{j} + (1-5)\mathbf{k}$$

$$\boxed{\vec{AC} = -\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}}$$

$$\therefore \vec{N} = \vec{AB} \times \vec{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & -1 & -4 \\ -1 & -2 & -4 \end{vmatrix} = \mathbf{i} \begin{vmatrix} -1 & -4 \\ -2 & -4 \end{vmatrix} \mathbf{j} \begin{vmatrix} 5 & -4 \\ -1 & -4 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 5 & -1 \\ -1 & -2 \end{vmatrix}$$
$$\vec{N} = \boxed{-4\mathbf{i} + 24\mathbf{j} - 11\mathbf{k}}$$

\therefore To find the value of "d", we do a substitution of any point A, B, or C as follows;

$$ax + by + cz = d \quad ; \quad d = ax_0 + by_0 + cz_0$$

$$\text{let } P_0 \rightarrow C(1, 1, 1) \Rightarrow d = (-4 \times 1) + (24 \times 1) + (-11 \times 1)$$

Scanned with CamScanner

$$\boxed{d = +9}$$

$$\therefore -4x + 24y - 11z = +9$$

Eq. of the plane

Questions for discussions :-

1) Find the parametric eqs for the lines for

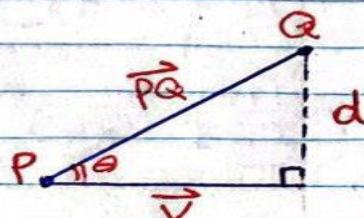
- The line through the point $P(3, -4, -1)$ parallel to the vector $\vec{V} = i + j + k$
- The line through $P(-2, 0, 3)$ & $Q(3, 5, -2)$
- The line through the origin parallel to vector $\vec{V} = 2j + k$
- The line through the point $(3, -2, 1)$ parallel to the line $x = 1 + 2t, y = 2 - t, z = 3t$

The Distance from a Point to a Line :

~~مقدار ادنى از ایجاد از یک خط~~

To find a distance from a point Q to a line that passes through a point P parallel to a vector \vec{V} , we use the following eqs-

$$d = \frac{|\vec{PQ} \times \vec{V}|}{|\vec{V}|}$$



Ex)

Find the distance from point $P(1, 1, 5)$ to the line $x = 1+t$, $y = 3-t$, $z = 2t$

Solutions

First of all, we need to find vector \vec{V} from the eqs of the line

$$\begin{aligned} x &= 1+t \\ y &= 3-t \\ z &= 2t \end{aligned} \quad \left\{ \begin{array}{l} \text{Compare} \\ \text{with} \end{array} \right\} \quad \begin{aligned} x &= x_0 + At \\ y &= y_0 + Bt \\ z &= z_0 + Ct \end{aligned} \quad \Rightarrow \vec{V} = A\mathbf{i} + B\mathbf{j} + C\mathbf{k}$$

$$\therefore A = 1, B = -1, C = 2.$$

$$\therefore \vec{V} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$$

To find $Q(x_0, y_0, z_0)$, put $t = 0 \rightarrow$

$$Q = (1, 3, 0)$$

$$\therefore \vec{PQ} = (1-1)\mathbf{i} + (3-1)\mathbf{j} + (0-5)\mathbf{k} = 2\mathbf{j} - 5\mathbf{k}$$

Scanned with CamScanner

$$\vec{PQ} \times \vec{V} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 2 & -5 \\ 1 & -1 & 2 \end{vmatrix} = (2 \times 2 - (-1 \times 5))\mathbf{i} - (0 \times 2 - (1 \times 5))\mathbf{j} + (0 \times (-1) - (2 \times 1))\mathbf{k}$$

$$\vec{PQ} \times \vec{V} = -\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$$

$$|\vec{PQ} \times \vec{V}| = \sqrt{(-1)^2 + (5)^2 + (-2)^2} = \sqrt{30}$$

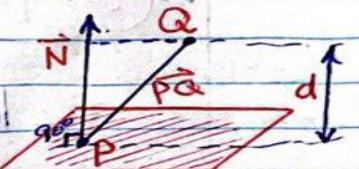
$$|\vec{V}| = \sqrt{1^2 + (-1)^2 + (2)^2} = \sqrt{6}$$

$$\therefore d = \frac{|\vec{PQ} \times \vec{V}|}{|\vec{V}|} = \frac{\sqrt{30}}{\sqrt{6}} = \sqrt{\frac{30}{6}} = \sqrt{5}$$

The Distance from a point to a plane:

IF P is a point with normal \vec{N} , then the distance from any point (Q) to the plane is the length of the vector projection of \vec{PQ} onto \vec{N} .

$$d = |\text{Proj}_{\vec{N}} \vec{PQ}| = \frac{|\vec{PQ} \cdot \vec{N}|}{|\vec{N}|}$$



Ex

Find the distance from the point $P(3, 1, 3)$ to the plane whose eq is $3x - 5y + z = 4$

Solution

First we need to find a point on a plane, so, put $x = y = 0$ into the given eq of the plane and yields

Scanned with CamScanner

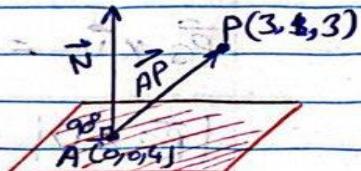
$$3(0) - 5(0) + 2 = 4 \rightarrow [2=4]$$

\therefore point $A(0, 0, 4)$ is satisfied the eq. of the plane.

lets find a vector \vec{AP}

$$\vec{AP} = (3-0)\mathbf{i} + (1-0)\mathbf{j} + (3-4)\mathbf{k}$$

$$\vec{AP} = 3\mathbf{i} + \mathbf{j} - \mathbf{k}$$



From the eqs of the plane (given), we can find normal vector \vec{N} , as follows

The typical eqs of the plane is

$$ax + by + cz = d \quad \vec{N} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

\therefore the eqs of the plane is $\rightarrow 3x - 5y + z = 4$

$$\vec{N} = 3\mathbf{i} - 5\mathbf{j} + \mathbf{k}$$

$$d = |\text{proj}_{\vec{N}} \vec{AP}| = \frac{|\vec{AP} \cdot \vec{N}|}{|\vec{N}|}$$

$$= \frac{|(3 \times 3) + (1 \times -5) + (-1 \times 1)|}{\sqrt{(3^2 + (-5)^2 + 1^2)}} = \frac{3}{\sqrt{35}}$$

Vector Functions

If $\vec{F}(x, y, z) = f_1(x, y, z)i + f_2(x, y, z)j + f_3(x, y, z)k$

Then;

$$\vec{R}(t) = x(t)i + y(t)j + z(t)k$$

$\vec{R}(t)$: is the position vector -

$$\vec{v}(t) = \frac{d\vec{R}(t)}{dt} = \frac{dx}{dt}i + \frac{dy}{dt}j + \frac{dz}{dt}k$$

$\vec{v}(t)$: is the velocity vector.

$$\vec{a}(t) = \frac{d^2\vec{R}}{dt^2} = \frac{d^2x}{dt^2}i + \frac{d^2y}{dt^2}j + \frac{d^2z}{dt^2}k$$

$\vec{a}(t)$: is the acceleration vector

$$|\vec{v}| = \sqrt{\left(\frac{dx}{dt}\right)^2} = \text{speed}$$

$$\frac{\vec{v}}{|\vec{v}|} = \frac{d\vec{R}/dt}{\sqrt{(d\vec{R}/dt)^2}} = \text{Direction}$$

Ex

The vector $\vec{R}(t) = (3\cos t)i + (3\sin t)j + t^2k$ gives the position of a moving body at time. Find the body's speed & direction when $t = 2$.
Solution

$$\vec{v}(t) = \frac{d\vec{R}(t)}{dt} = -(3\sin t)i + (3\cos t)j + 2t k$$

$$\Rightarrow \text{speed} = |\vec{v}(t)| = \sqrt{(-3\sin t)^2 + (3\cos t)^2 + (2t)^2}$$

$$|\vec{v}(t)|_{t=2} = \sqrt{(-3\sin 2)^2 + (3\cos 2)^2 + (2 \times 2)^2} = [5] \text{ unit of speed}$$

$$\text{Direction } 1 = \frac{\vec{v}(2)}{|\vec{v}(2)|} = \frac{t_3 \sin 2 \mathbf{i} + (3 \cos 2) \mathbf{j} + (2 \times 2) \mathbf{k}}{5}$$

$$\text{Direction} = \frac{1}{5} (-0.105 \mathbf{i} + 3 \mathbf{j} + 4 \mathbf{k}) \quad \text{Ans}$$

H-Ws 8

1 غير داخل - Find the acute angles between the lines

$$a - 3x + y = 5 \quad ; \quad 2x - y = 4$$

$$b - 12x + 5y = 1 \quad ; \quad 2x - 2y = 3$$

2 a - Find the area of the triangle determined by $P(1, 1, 1)$, $Q(2, 1, 3)$, $R(3, -1, 1)$?

b - Find a unit vector perpendicular to plane PQR ?

3 Let $U = 5\mathbf{i} - \mathbf{j} + \mathbf{k}$, $V = \mathbf{j} - 5\mathbf{k}$ & $W = -15\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$
which vectors are (a) perpendicular (b) parallel ?

4 Find the point where the line $x = \frac{z}{3} + 2t$,
 $y = -2t$ & $z = 1 + t$ intersects the plane
 $3x + 2y + 6z = 6$?

5 Find the distance from $S(1, 1, 3)$ to the plane
 $3x + 2y + 6z = 6$

-- نهاية محاضرة " Vectors, Vectors in Space, Unit Vector, Scalar

Product, Vector Product, line & plane eqs, plane-tangent-

المتجهات، المتجهات في الفضاء، وحدة perpendicular line-vector function

العددية، ضرب المتجه، معادلة الخط والمستوى، الخط المماس للمتجه، ضرب القيمة

والعمودي على المستوى، دالة المتجه--