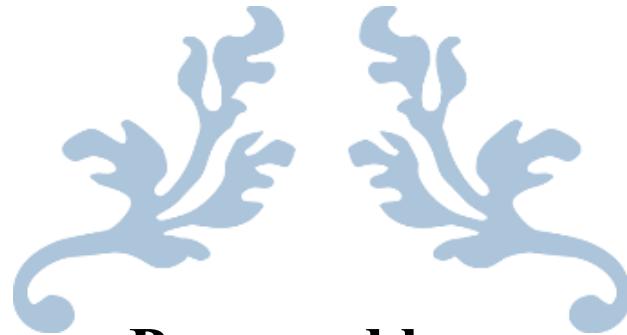


Republic of Iraq
Ministry of Higher Education
and Scientific Research



College of Engineering Technologies
Al-Mustaqlab University

Heat Transfer Engineering

Prepared by
Asst. Prof. Dr. Ammar Abdulkadhim Fathi

Fall of 2025

Heat Transfer Engineering

CHAPTER ONE

INTRODUCTION TO HEAT TRANSFER

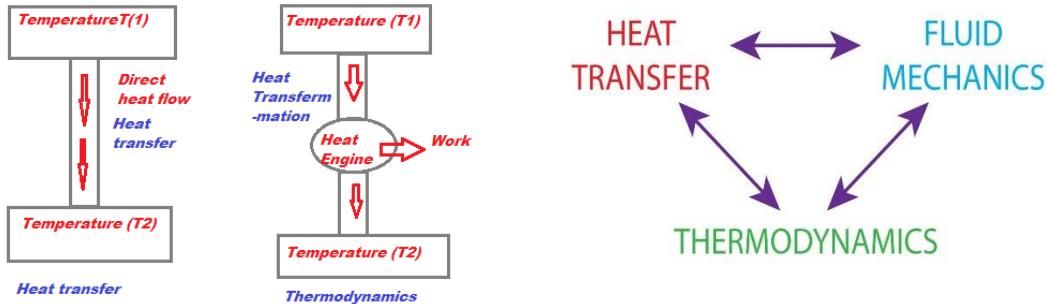
Introduction

Useful conversion factors

Physical quantity	Symbol	SI to English conversion	English to SI conversion
Length	L	$1 \text{ m} = 3.2808 \text{ ft}$	$1 \text{ ft} = 0.3048 \text{ m}$
Area	A	$1 \text{ m}^2 = 10.7639 \text{ ft}^2$	$1 \text{ ft}^2 = 0.092903 \text{ m}^2$
Volume	V	$1 \text{ m}^3 = 35.3134 \text{ ft}^3$	$1 \text{ ft}^3 = 0.028317 \text{ m}^3$
Velocity	v	$1 \text{ m/s} = 3.2808 \text{ ft/s}$	$1 \text{ ft/s} = 0.3048 \text{ m/s}$
Density	ρ	$1 \text{ kg/m}^3 = 0.06243 \text{ lb}_m/\text{ft}^3$	$1 \text{ lb}_m/\text{ft}^3 = 16.018 \text{ kg/m}^3$
Force	F	$1 \text{ N} = 0.2248 \text{ lb}_f$	$1 \text{ lb}_f = 4.4482 \text{ N}$
Mass	m	$1 \text{ kg} = 2.20462 \text{ lb}_m$	$1 \text{ lb}_m = 0.45359237 \text{ kg}$
Pressure	p	$1 \text{ N/m}^2 = 1.45038 \times 10^{-4} \text{ lb}_f/\text{in}^2$	$1 \text{ lb}_f/\text{in}^2 = 6894.76 \text{ N/m}^2$
Energy, heat	q	$1 \text{ kJ} = 0.94783 \text{ Btu}$	$1 \text{ Btu} = 1.05504 \text{ kJ}$
Heat flow	q	$1 \text{ W} = 3.4121 \text{ Btu/h}$	$1 \text{ Btu/h} = 0.29307 \text{ W}$
Heat flux per unit area	q/A	$1 \text{ W/m}^2 = 0.317 \text{ Btu/h} \cdot \text{ft}^2$	$1 \text{ Btu/h} \cdot \text{ft}^2 = 3.154 \text{ W/m}^2$
Heat flux per unit length	q/L	$1 \text{ W/m} = 1.0403 \text{ Btu/h} \cdot \text{ft}$	$1 \text{ Btu/h} \cdot \text{ft} = 0.9613 \text{ W/m}$
Heat generation per unit volume	\dot{q}	$1 \text{ W/m}^3 = 0.096623 \text{ Btu/h} \cdot \text{ft}^3$	$1 \text{ Btu/h} \cdot \text{ft}^3 = 10.35 \text{ W/m}^3$
Energy per unit mass	q/m	$1 \text{ kJ/kg} = 0.4299 \text{ Btu/lb}_m$	$1 \text{ Btu/lb}_m = 2.326 \text{ kJ/kg}$
Specific heat	c	$1 \text{ kJ/kg} \cdot {}^\circ\text{C} = 0.23884 \text{ Btu/lb}_m \cdot {}^\circ\text{F}$	$1 \text{ Btu/lb}_m \cdot {}^\circ\text{F} = 4.1869 \text{ kJ/kg} \cdot {}^\circ\text{C}$
Thermal conductivity	k	$1 \text{ W/m} \cdot {}^\circ\text{C} = 0.5778 \text{ Btu/h} \cdot \text{ft} \cdot {}^\circ\text{F}$	$1 \text{ Btu/h} \cdot \text{ft} \cdot {}^\circ\text{F} = 1.7307 \text{ W/m} \cdot {}^\circ\text{C}$
Convection heat-transfer coefficient	h	$1 \text{ W/m}^2 \cdot {}^\circ\text{C} = 0.1761 \text{ Btu/h} \cdot \text{ft}^2 \cdot {}^\circ\text{F}$	$1 \text{ Btu/h} \cdot \text{ft}^2 \cdot {}^\circ\text{F} = 5.6782 \text{ W/m}^2 \cdot {}^\circ\text{C}$
Dynamic		$1 \text{ kg/m} \cdot \text{s} = 0.672 \text{ lb}_m/\text{ft} \cdot \text{s}$	
Viscosity	μ	$= 2419.2 \text{ lb}_m/\text{ft} \cdot \text{h}$	$1 \text{ lb}_m/\text{ft} \cdot \text{s} = 1.4881 \text{ kg/m} \cdot \text{s}$
Kinematic viscosity and thermal diffusivity	ν, α	$1 \text{ m}^2/\text{s} = 10.7639 \text{ ft}^2/\text{s}$	$1 \text{ ft}^2/\text{s} = 0.092903 \text{ m}^2/\text{s}$

Important physical constants

Avogadro's number	$N_0 = 6.022045 \times 10^{26}$ molecules/kg mol
Universal gas constant	$\mathcal{R} = 1545.35 \text{ ft} \cdot \text{lbf/lbm} \cdot \text{mol} \cdot {}^\circ\text{R}$ $= 8314.41 \text{ J/kg mol} \cdot \text{K}$ $= 1.986 \text{ Btu/lbm} \cdot \text{mol} \cdot {}^\circ\text{R}$ $= 1.986 \text{ kcal/kg mol} \cdot \text{K}$
Planck's constant	$h = 6.626176 \times 10^{-34} \text{ J} \cdot \text{sec}$
Boltzmann's constant	$k = 1.380662 \times 10^{-23} \text{ J/molecule} \cdot \text{K}$ $= 8.6173 \times 10^{-5} \text{ eV/molecule} \cdot \text{K}$
Speed of light in vacuum	$c = 2.997925 \times 10^8 \text{ m/s}$
Standard gravitational acceleration	$g = 32.174 \text{ ft/s}^2$ $= 9.80665 \text{ m/s}^2$
Electron mass	$m_e = 9.1095 \times 10^{-31} \text{ kg}$
Charge on the electron	$e = 1.602189 \times 10^{-19} \text{ C}$
Stefan-Boltzmann constant	$\sigma = 0.1714 \times 10^{-8} \text{ Btu/hr} \cdot \text{ft}^2 \cdot \text{R}^4$ $= 5.669 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$ $= 14.69595 \text{ lbf/in}^2 = 760 \text{ mmHg at } 32^\circ\text{F}$ $= 29.92 \text{ inHg at } 32^\circ\text{F} = 2116.21 \text{ lbf/ft}^2$ $= 1.01325 \times 10^5 \text{ N/m}^2$


LIST OF SYMBOLS

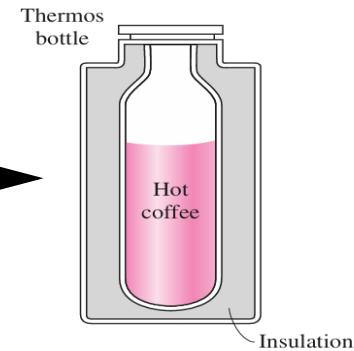
a	Local velocity of sound	f	Friction factor
a	Attenuation coefficient (Chap. 8)	F	Force, usually N
A	Area	F_{m-n} or F_{ij}	Radiation shape factor for radiation from surface i to surface j
A	Albedo (Chap. 8)	g	Acceleration of gravity
A_m	Fin profile area (Chap. 2)	g_c	Conversion factor, defined by Eq. (1-14)
c	Specific heat, usually $\text{kJ/kg} \cdot ^\circ\text{C}$	G	Irradiation (Chap. 8)
C	Concentration (Chap. 11)	$G = \frac{\dot{m}}{A}$	Mass velocity
C_D	Drag coefficient, defined by Eq. (6-13)	h	Heat-transfer coefficient, usually $\text{W/m}^2 \cdot ^\circ\text{C}$
C_f	Friction coefficient, defined by Eq. (5-52)	\bar{h}	Average heat-transfer coefficient
c_p	Specific heat at constant pressure, usually $\text{kJ/kg} \cdot ^\circ\text{C}$	h_{fg}	Enthalpy of vaporization, kJ/kg
c_v	Specific heat at constant volume, usually $\text{kJ/kg} \cdot ^\circ\text{C}$	h_r	Radiation heat-transfer coefficient (Chap. 8)
d	Diameter	i	Enthalpy, usually kJ/kg
D	Depth or diameter	I	Intensity of radiation
D	Diffusion coefficient (Chap. 11)	I	Solar insolation (Chap. 8)
D_H	Hydraulic diameter, defined by Eq. (6-14)	I_0	Solar insolation at outer edge of atmosphere
e	Internal energy per unit mass, usually kJ/kg	J	Radiosity (Chap. 8)
E	Internal energy, usually kJ	k	Thermal conductivity, usually $\text{W/m} \cdot ^\circ\text{C}$
E	Emissive power, usually W/m^2 (Chap. 8)		

The science of thermodynamics deals with the amount of heat transfer as a system undergoes a process from one equilibrium state to another, and makes no reference to how long the process will take. But in engineering, we are often interested in the rate of heat transfer, which is the topic of the science of heat transfer.

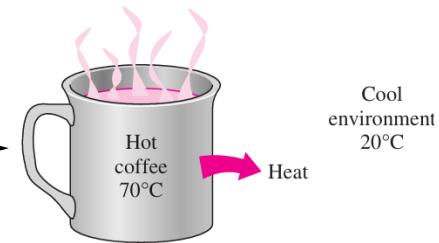
Thus, it is important to know the major differences between Thermodynamics and Heat Transfer

Thermodynamics:

- Focuses on the amount of energy that transferred such as heat or work.
- Examines on the initial and final thermodynamics states of a thermal system.
- Does not consider how fast or by which mechanism the heat moves.
- Based on laws (e.g., First Law, Second Law).
- It's more about equilibrium and energy conservation.

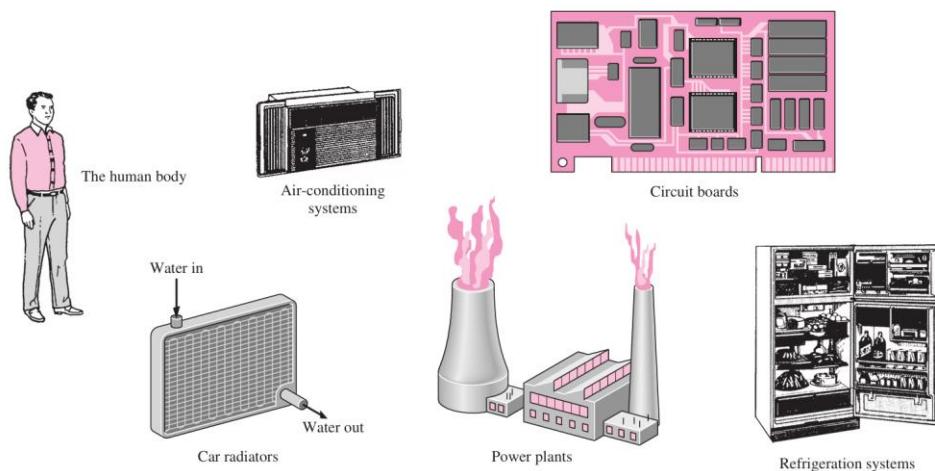

Heat Transfer:

- Focuses on how heat moves from one place to another.
- Deals with mechanisms: such as Conduction, convection, radiation.
- Describes temperature distributions, heat flux, heat transfer rates.
- Involves solving differential equations
- Solutions to various heat transfer problems using numerical methods such as FDM, FEM, FVEM, etc.



Illustrative examples on Thermodynamics and Heat Transfer Analysis

We are normally interested in how long it takes for the hot coffee in a thermos to cool to a certain temperature, which cannot be determined from a thermodynamic analysis alone.



Heat flows in the direction of decreasing temperature.

Application Areas of Heat Transfer

- Heat transfer is commonly encountered in engineering systems and other aspects of life, and one does not need to go very far to see some application areas of heat transfer.
- In fact, one does not need to go anywhere. The human body is constantly rejecting heat to its surroundings, and human comfort is closely tied to the rate of this heat rejection. We try to control this heat transfer rate by adjusting our clothing to the environmental conditions.

