

Heat conduction through a plane wall

Case I: Uniform thermal conductivity

Refer to Fig. 2.4 (a) Consider a plane wall of homogeneous material through which heat is flowing *only in x-direction*.

Let,

L = Thickness of the plane wall,

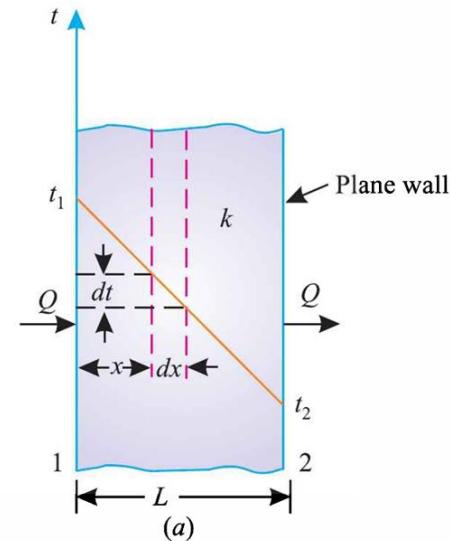
A = Cross-sectional area of the wall,

k = Thermal conductivity of the wall material, and

t_1, t_2 = Temperatures maintained at the two faces 1 and 2 of the wall, respectively.

The general heat conduction equation in cartesian coordinates is given by

$$\frac{\partial^2 t}{dx^2} + \frac{\partial^2 t}{dy^2} + \frac{\partial^2 t}{dz^2} + \frac{q_g}{k} = \frac{1}{\alpha} \cdot \frac{\partial t}{\partial \tau} \quad \dots[\text{Eqn. 2.8}]$$



$$(R_{th})_{cond.} = \frac{L}{kA}$$

If the heat conduction takes place under the conditions, steady state $\left(\frac{\partial t}{\partial \tau} = 0\right)$, one-dimensional $\left[\frac{\partial^2 t}{\partial y^2} = \frac{\partial^2 t}{\partial z^2} = 0\right]$ and with no internal heat generation $\left(\frac{q_g}{k} = 0\right)$ then the above equation is reduced to

$$\frac{\partial^2 t}{dx^2} = 0, \quad \text{or} \quad \frac{d^2 t}{dx^2} = 0 \quad \dots(2.33)$$

By integrating the above differential twice, we have

$$\frac{dt}{dx} = C_1 \quad \text{and} \quad t = C_1 x + C_2 \quad \dots(2.34)$$

where C_1 and C_2 are the arbitrary constants. The values of these constants may be calculated from the known boundary conditions as follows :

$$\text{At } x = 0 \quad t = t_1$$

$$\text{At } x = L \quad t = t_2$$

Substituting the values in the eqn. (2.34), we get

$$t_1 = 0 + C_2 \quad \text{and} \quad t_2 = C_1 L + C_2$$

$$\text{After simplification, we have, } C_2 = t_1 \quad \text{and} \quad C_1 = \frac{t_2 - t_1}{L}$$

Thus, the eqn. (2.34) reduces to :

$$t = \left(\frac{t_2 - t_1}{L} \right) x + t_1 \quad \dots(2.35)$$

(b)
Fig. 2.4. Heat conduction through a plane wall.

The eqn. (2.35) indicates that *temperature distribution across a wall is linear* and is *independent of thermal conductivity*. Now heat through the plane wall can be found by using Fourier's equation as follows :

$$Q = -kA \frac{dt}{dx} \quad (\text{where, } \frac{dt}{dx} = \text{Temperature gradient}) \quad \dots$$

[Eqn.(1.1)]

But, $\frac{dt}{dx} = \frac{d}{dx} \left[\left(\frac{t_2 - t_1}{L} \right) x + t_1 \right] = \frac{t_2 - t_1}{L}$

$$\therefore Q = -kA \frac{(t_2 - t_1)}{L} = \frac{kA(t_1 - t_2)}{L} \quad \dots(2.36)$$

Eqn (2.36) can be written as :

$$Q = \frac{(t_1 - t_2)}{(L/kA)} = \frac{(t_1 - t_2)}{(R_{th})_{cond.}} \quad \dots(2.37)$$

where, $(R_{th})_{cond.}$ = Thermal resistance to heat conduction. Fig. 2.4 (b) shows the *equivalent thermal circuit* for heat flow through the plane wall.

Heat conduction through a composite wall

Refer to Fig. 2.6 (a). Consider the transmission of heat through a composite wall consisting of a number of slabs.

Let, L_A, L_B, L_C = Thicknesses of slabs A, B and C respectively (also called path lengths),
 k_A, k_B, k_C = Thermal conductivities of the slabs A, B, and C respectively,
 t_1, t_4 ($t_1 > t_4$) = Temperatures at the wall surfaces 1 and 4 respectively, and
 t_2, t_3 = Temperatures at the interfaces 2 and 3 respectively.

Since the quantity of heat transmitted per unit time through each slab/layer is same, we have,

$$Q = \frac{k_A \cdot A (t_1 - t_2)}{L_A} = \frac{k_B \cdot A (t_2 - t_3)}{L_B} = \frac{k_C \cdot A (t_3 - t_4)}{L_C}$$

(Assuming that there is a perfect contact between the layers and no temperature drop occurs across the interface between the materials).

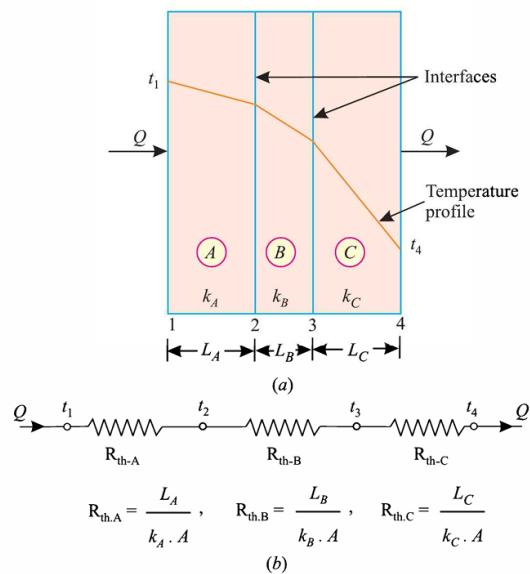


Fig. 2.6. Steady state conduction through a composite wall.

Rearranging the above expression, we get

$$t_1 - t_2 = \frac{Q \cdot L_A}{k_A \cdot A} \quad \dots(i)$$

$$t_2 - t_3 = \frac{Q \cdot L_B}{k_B \cdot A} \quad \dots(ii)$$

$$t_3 - t_4 = \frac{Q \cdot L_C}{k_C \cdot A} \quad \dots(iii)$$

Adding (i), (ii) and (iii), we have

$$(t_1 - t_4) = Q \left[\frac{L_A}{k_A \cdot A} + \frac{L_B}{k_B \cdot A} + \frac{L_C}{k_C \cdot A} \right]$$

or,

$$Q = \frac{A (t_1 - t_4)}{\left[\frac{L_A}{k_A} + \frac{L_B}{k_B} + \frac{L_C}{k_C} \right]} \quad \dots(2.49)$$

$$\text{or, } Q = \frac{(t_1 - t_4)}{\left[\frac{L_A}{k_A \cdot A} + \frac{L_B}{k_B \cdot A} + \frac{L_C}{k_C \cdot A} \right]} = \frac{(t_1 - t_4)}{[R_{th-A} + R_{th-B} + R_{th-C}]} \quad \dots[2.49(a)]$$

If the composite wall consists of n slabs/layers, then

$$Q = \frac{[t_1 - t_{(n+1)}]}{\sum_{i=1}^n \frac{L}{kA}} \quad \dots(2.50)$$

In order to solve more complex problems involving both series and parallel thermal resistances, the electrical analogy may be used. A typical problem and its analogous electric circuit are shown in Fig. 2.7.

$$Q = \frac{\Delta t_{\text{overall}}}{\sum R_{th}} \quad \dots(2.51)$$

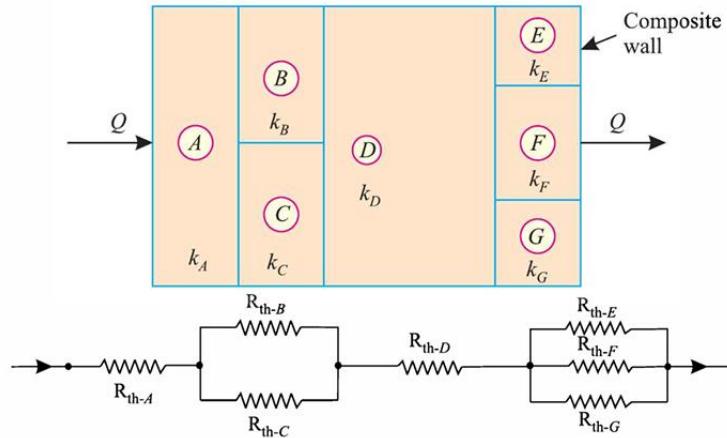


Fig. 2.7. Series and parallel one-dimensional heat transfer through a composite wall and electrical analog.

Thermal contact resistance

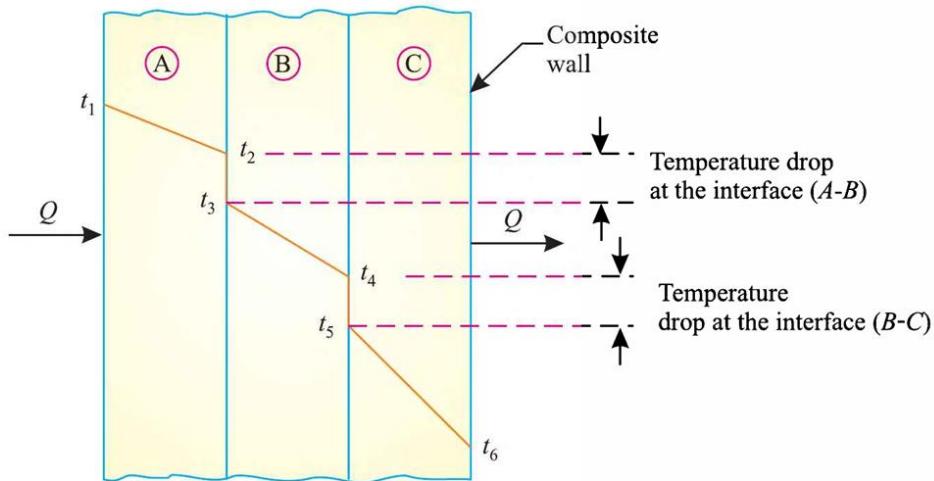


Fig. 2.8. Temperature drops at the interfaces.

Refer to Fig. 2.8. The contact resistances are given by

$$(R_{th-AB})_{cont.} = \frac{(t_2 - t_3)}{Q/A} \quad \text{and} \quad (R_{th-BC})_{cont.} = \frac{(t_4 - t_5)}{Q/A}$$

The overall heat transfer coefficient

While dealing with the problems of fluid to fluid heat transfer across a metal boundary, it is usual to adopt an overall heat transfer coefficient U which *gives the heat transmitted per unit area per unit time per degree temperature difference between the bulk fluids on each side of the metal*.

Refer to Fig. 2.9

Let,

L = Thickness of the metal wall,

k = Thermal conductivity of the wall material,

t_1 = Temperature of the surface-1,

t_2 = Temperature of the surface-2,

t_{hf} = Temperature of the hot fluid,

t_{cf} = Temperature of the cold fluid,

h_{hf} = Heat transfer coefficient from hot fluid to metal surface, and

h_{cf} = Heat transfer coefficient from metal surface to cold fluid.

(The suffices hf and cf stand for hot fluid and cold fluid respectively.)

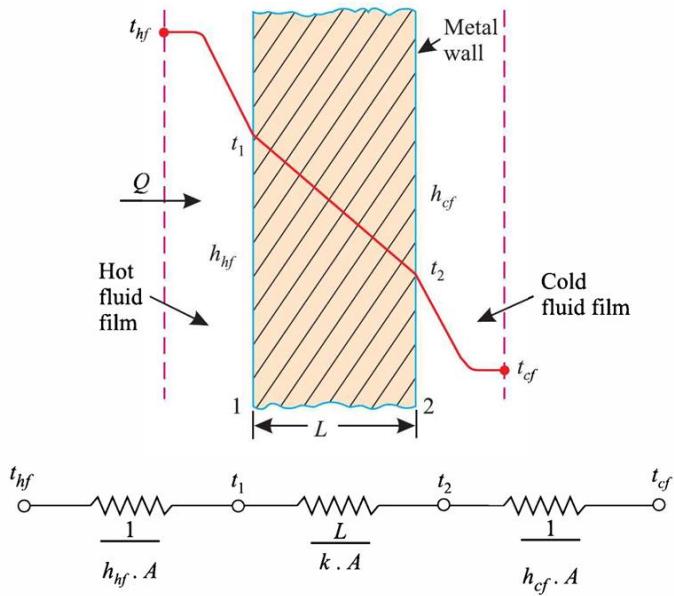


Fig. 2.9. The overall heat transfer through a plane wall.

The equations of heat flow through the fluid and the metal surface are given by

$$Q = h_{hf} A (t_{hf} - t_1) \quad \dots(i)$$

$$Q = \frac{k \cdot A (t_1 - t_2)}{L} \quad \dots(ii)$$

$$Q = h_{cf} A (t_2 - t_{cf}) \quad \dots(iii)$$

By rearranging (i), (ii) and (iii), we get

$$t_{hf} - t_1 = \frac{Q}{h_{hf} \cdot A} \quad \dots(iv)$$

$$t_1 - t_2 = \frac{Q L}{k \cdot A} \quad \dots(v)$$

$$t_2 - t_{cf} = \frac{Q}{h_{cf} \cdot A} \quad \dots(vi)$$

Adding (iv), (v) and (vi) we get

$$t_{hf} - t_{cf} = Q \left[\frac{1}{h_{hf} \cdot A} + \frac{L}{k \cdot A} + \frac{1}{h_{cf} \cdot A} \right]$$

$$\text{or, } Q = \frac{A (t_{hf} - t_{cf})}{\frac{1}{h_{hf}} + \frac{L}{k} + \frac{1}{h_{cf}}} \quad \dots(2.52)$$

If U is the overall coefficient of heat transfer, then

$$Q = U \cdot A (t_{hf} - t_{cf}) = \frac{A (t_{hf} - t_{cf})}{\frac{1}{h_{hf}} + \frac{L}{k} + \frac{1}{h_{cf}}} \quad \dots(2.53)$$

or,

$$U = \frac{1}{\frac{1}{h_{hf}} + \frac{L}{k} + \frac{1}{h_{cf}}} \quad \dots(2.53)$$

Tutorial on heat conduction equation

Example 2.2. The inner surface of a plane brick wall is at 60°C and the outer surface is at 35°C . Calculate the rate of heat transfer per m^2 of surface area of the wall, which is 220 mm thick. The thermal conductivity of the brick is $0.51 \text{ W/m}^{\circ}\text{C}$.

(AMIE Winter, 2000)

Solution. Temperature of the inner surface of the wall, $t_1 = 60^{\circ}\text{C}$

Temperature of the outer surface of the wall, $t_2 = 35^{\circ}\text{C}$

The thickness of the wall, $L = 220 \text{ mm} = 0.22 \text{ m}$

Thermal conductivity of the brick,
 $k = 0.51 \text{ W/m}^{\circ}\text{C}$

Rate of heat transfer per m^2 , q :

Rate of heat transfer per unit area,

$$q = \frac{Q}{A} = \frac{k(t_1 - t_2)}{L}$$

or

$$q = \frac{0.51 \times (60 - 35)}{0.22} = 57.95 \text{ W/m}^2 \text{ (Ans.)}$$

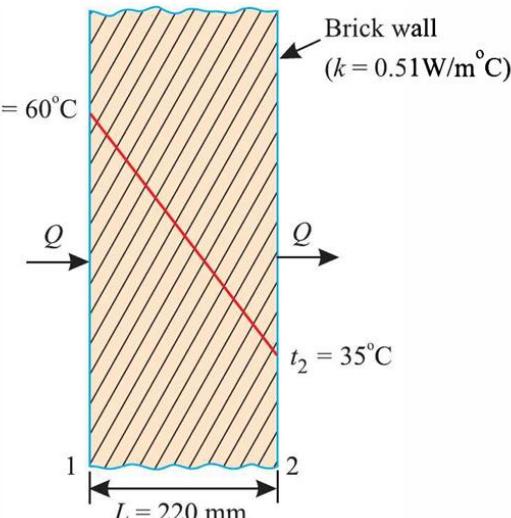


Fig. 2.10.

Example 2.3. Consider a slab of thickness $L = 0.25 \text{ m}$. One surface is kept at 100°C and the other surface at 0°C . Determine the net flux across the slab if the slab is made from pure copper. Thermal conductivity of copper may be taken as 387.6 W/m K .

(AMIE Winter, 1998)

Solution. Given : $L = 0.25 \text{ m}$; $t_1 = 100^{\circ}\text{C}$;
 $t_2 = 0^{\circ}\text{C}$; $k = 387.6 \text{ W/m K}$.

From Fourier's law,

$$Q = -kA \frac{dt}{dx} \dots [\text{Eqn. (1.1)}]$$

$$\begin{aligned} \text{Net flux, } q &= \frac{Q}{A} = -k \cdot \frac{(t_2 - t_1)}{L} \\ &= -387.6 \times \frac{(0 - 100)}{0.25} \\ &= 1.55 \times 10^5 \text{ W/m}^2 \text{ (Ans.)} \end{aligned}$$

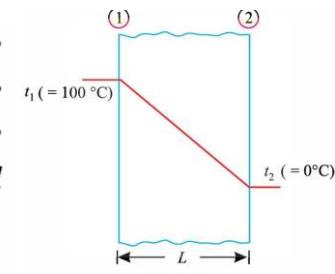


Fig. 2.11.

Example 2.4. A reactor's wall, 320 mm thick, is made up of an inner layer of fire brick ($k = 0.84 \text{ W/m}^\circ\text{C}$) covered with a layer of insulation ($k = 0.16 \text{ W/m}^\circ\text{C}$). The reactor operates at a temperature of 1325°C and the ambient temperature is 25°C .

(i) Determine the thickness of fire brick and insulation which gives minimum heat loss;

(ii) Calculate the heat loss presuming that the insulating material has a maximum temperature of 1200°C .

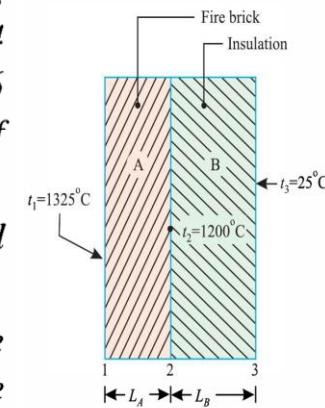


Fig. 2.12.

If the calculated heat loss is not acceptable, then state whether addition of another layer of insulation would provide a satisfactory solution.

Solution. Refer to Fig. 2.12.

Given :

$$t_1 = 1325^\circ\text{C}; t_2 = 1200^\circ\text{C}, t_3 = 25^\circ\text{C}$$

$$L_A + L_B = L = 320 \text{ mm or } 0.32 \text{ m}$$

∴

$$L_B = (0.32 - L_A); \quad \dots(i)$$

$$k_A = 0.84 \text{ W/m}^\circ\text{C};$$

$$k_B = 0.16 \text{ W/m}^\circ\text{C}.$$

(i) $L_A : L_B$:

The heat flux, under steady state conditions, is constant throughout the wall and is same for each layer. Then for *unit area* of wall,

$$q = \frac{t_1 - t_3}{L_A / k_A + L_B / k_B} = \frac{t_1 - t_2}{L_A / k_A} = \frac{t_2 - t_3}{L_B / k_B}$$

Considering first two quantities, we have

$$\frac{(1325 - 25)}{L_A / 0.84 + L_B / 0.16} = \frac{(1325 - 1200)}{L_A / 0.84}$$

$$\text{or, } \frac{1300}{1.190 L_A + 6.25 (0.32 - L_A)} = \frac{105}{L_A}$$

$$\text{or, } \frac{1300}{1.190 L_A + 2 - 6.25 L_A} = \frac{105}{L_A}$$

$$\text{or, } \frac{1300}{2 - 5.06 L_A} = \frac{105}{L_A}$$

$$\text{or, } 1300 L_A = 105 (2 - 5.06 L_A)$$

$$\text{or, } 1300 L_A = 210 - 531.3 L_A$$

$$\text{or, } L_A = \frac{210}{(1300 + 531.3)} = 0.1146 \text{ m or } \mathbf{114.6 \text{ mm}}$$

$$\therefore \text{Thickness of insulation } L_B = 320 - 114.6 = \mathbf{205.4 \text{ mm (Ans.)}}$$

(ii) Heat loss per unit area, q :

Heat loss per unit area, $q = \frac{t_1 - t_2}{L_A / k_A} = \frac{1325 - 1200}{0.1146 / 0.84} = 916.23 \text{ W/m}^2 \text{ (Ans.)}$

If another layer of insulating material is added, the heat loss from the wall will reduce; consequently the temperature drop across the fire brick lining will drop and the interface temperature t_2 will rise. As the interface temperature is *already fixed*, therefore, a *satisfactory solution will not be available by adding another layer of insulation*.

Example 2.5. A wall of a furnace is made up of inside layer of silica brick 120 mm thick covered with a layer of magnesite brick 240 mm thick. The temperatures at the inside surface of silica brick wall and outside surface of magnesite brick wall are 725°C and 110°C respectively. The contact thermal resistance between the two walls at the interface is 0.0035°C/W per unit wall area. If thermal conductivities of silica and magnesite bricks are $1.7 \text{ W/m}^\circ\text{C}$ and $5.8 \text{ W/m}^\circ\text{C}$, calculate.

- The rate of heat loss per unit area of walls, and
- The temperature drop at the interface.

Solution. Refer Fig. 2.13.

Given :

$$L_A = 120 \text{ mm} = 0.12 \text{ m};$$

$$L_B = 240 \text{ mm} = 0.24 \text{ m};$$

$$k_A = 1.7 \text{ W/m}^\circ\text{C}; k_B = 5.8 \text{ W/m}^\circ\text{C}$$

$$\text{The contact thermal resistance } (R_{th})_{cont.} = 0.0035^\circ\text{C/W}$$

The temperature at the inside surface of silica brick wall, $t_1 = 725^\circ\text{C}$

The temperature at the outside surface of the magnesite brick wall, $t_4 = 110^\circ\text{C}$

(i) The rate of heat loss per unit area of wall, q :

$$\begin{aligned} q &= \frac{\Delta t}{\sum R_{th}} = \frac{\Delta t}{R_{th-A} + (R_{th})_{cont.} + R_{th-B}} \\ &= \frac{(t_1 - t_4)}{L_A / k_A + 0.0035 + L_B / k_B} \\ &= \frac{(725 - 110)}{0.12 / 1.7 + 0.0035 + 0.24 / 5.8} \\ &= \frac{615}{0.0706 + 0.0035 + 0.0414} \\ &= 5324.67 \text{ W/m}^2 \end{aligned}$$

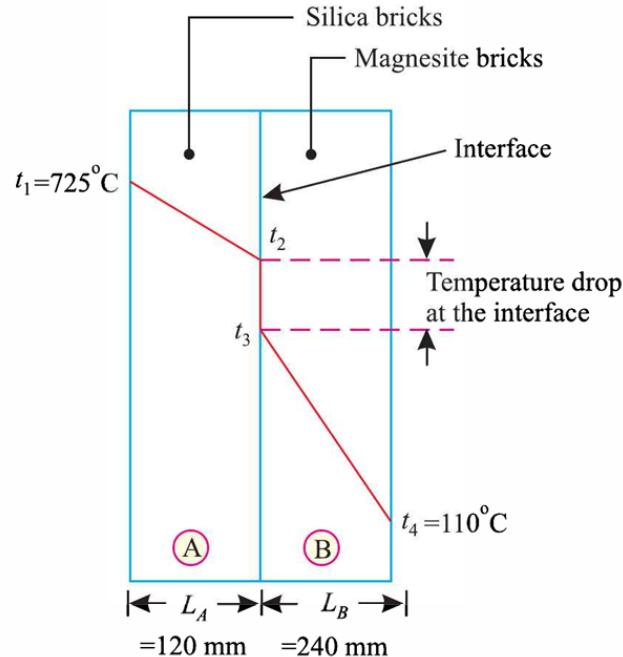


Fig. 2.13.

∴ The rate of heat loss per unit area of wall, $q = 5324.67 \text{ W/m}^2$ (Ans.)

(ii) **The temperature drop at the interface, $(t_2 - t_3)$:**

As the same heat flows through each layer of composite wall, therefore,

$$q = \frac{t_1 - t_2}{L_A / k_A} = \frac{t_3 - t_4}{L_B / k_B}$$

or,

$$5324.67 = \frac{(725 - t_2)}{0.12/1.7}$$

$$\text{or, } t_2 = 725 - 5324.67 \times \frac{0.12}{1.7} = 349.14^\circ\text{C}$$

Similarly,

$$5324.67 = \frac{(t_3 - 110)}{0.24/5.8}$$

$$\text{or, } t_3 = 110 + 5324.67 \times \frac{0.24}{5.8} = 330.33^\circ\text{C}$$

$$\begin{aligned} \text{Hence, the temperature drop at the interface} &= t_2 - t_3 \\ &= 349.14 - 330.33 = 18.81^\circ\text{C} \quad (\text{Ans.}) \end{aligned}$$

Example 2.6. An exterior wall of a house may be approximated by a 0.1 m layer of common brick ($k = 0.7 \text{ W/m}^\circ\text{C}$) followed by a 0.04 m layer of gypsum plaster ($k = 0.48 \text{ W/m}^\circ\text{C}$). What thickness of loosely packed rock wool insulation ($k = 0.065 \text{ W/m}^\circ\text{C}$) should be added to reduce the heat loss or (gain) through the wall by 80 per cent ? (AMIE Summer, 1999)

Solution. Refer to Fig. 2.14.

Thickness of common brick, $L_A = 0.1 \text{ m}$

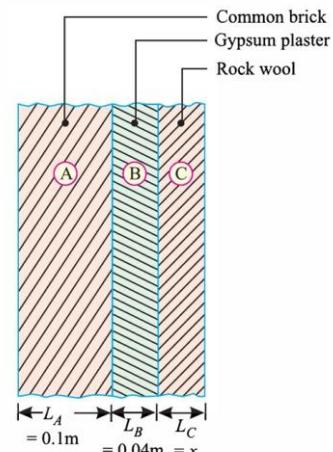


Fig. 2.14.

Thickness of gypsum plaster, $L_B = 0.04 \text{ m}$

Thickness of rock wool, $L_C = x \text{ (in m)} = ?$

Thermal conductivities :

Common brick, $k_A = 0.7 \text{ W/m}^\circ\text{C};$

Gypsum plaster, $k_B = 0.48 \text{ W/m}^\circ\text{C};$

Rock wool, $k_C = 0.065 \text{ W/m}^\circ\text{C}.$

Case I. Rock wool insulation not used :

$$Q_1 = \frac{A(\Delta t)}{\frac{L_A}{k_A} + \frac{L_B}{k_B}} = \frac{A(\Delta t)}{\frac{0.1}{0.7} + \frac{0.04}{0.48}} \quad \dots(i)$$

Case II. Rock wool insulation used :

$$Q_2 = \frac{A(\Delta t)}{\frac{L_A}{k_A} + \frac{L_B}{k_B} + \frac{L_C}{k_C}} = \frac{A(\Delta t)}{\frac{0.1}{0.7} + \frac{0.04}{0.48} + \frac{x}{0.065}} \quad \dots(ii)$$

But,

$$Q_2 = (1 - 0.8) Q_1 = 0.2 Q_1 \quad \dots(given)$$

$$\therefore \frac{A(\Delta t)}{\frac{0.1}{0.7} + \frac{0.04}{0.48} + \frac{x}{0.065}} = 0.2 \times \frac{A(\Delta t)}{\frac{0.1}{0.7} + \frac{0.04}{0.48}}$$

$$\text{or, } \frac{0.1}{0.7} + \frac{0.04}{0.48} = 0.2 \left[\frac{0.1}{0.7} + \frac{0.04}{0.48} + \frac{x}{0.065} \right]$$

$$\text{or, } 0.1428 + 0.0833 = 0.2 [0.1428 + 0.0833 + 15.385x]$$

$$\text{or, } 0.2261 = 0.2 (0.2261 + 15.385x)$$

$$\text{or, } x = 0.0588 \text{ m or } 58.8 \text{ mm}$$

Thus, the thickness of rock wool insulation should be **58.8 mm** (Ans.)

Example 2.7. A furnace wall consists of 200 mm layer of refractory bricks, 6 mm layer of steel plate and a 100 mm layer of insulation bricks. The maximum temperature of the wall is 1150°C on the furnace side and the minimum temperature is 40°C on the outermost side of the wall. An accurate energy balance over the furnace shows that the heat loss from the wall is 400 W/m². It is known that there is a thin layer of air between the layers of refractory bricks and steel plate. Thermal conductivities for the three layers are 1.52, 45 and 0.138 W/m°C respectively. Find :

(i) To how many millimeters of insulation brick is the air layer equivalent?

(ii) What is the temperature of the outer surface of the steel plate?

(AMIE Winter, 1996)

Solution. Refer Fig. 2.15.

Thickness of refractory bricks,

$$L_A = 200 \text{ mm} = 0.2 \text{ m}$$

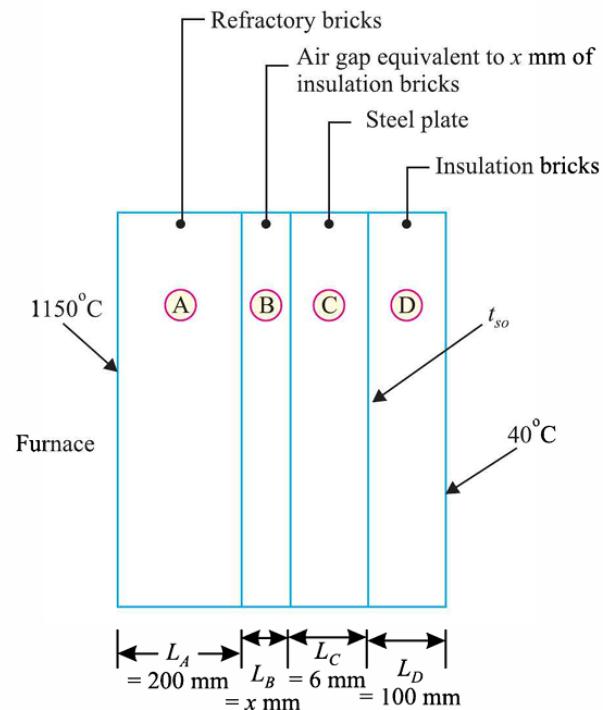


Fig. 2.15.