

Al-Mustaql University / College of Engineering & Technology
Communication Technical Engineering Department
Class (Second)
Signal and System / Code (UOMU0207032)
Lecturer (Prof.Dr.Haider jabber Abd)
1stterm – Lecture 1. (introduction to Signal and System)

Delivery Plan (Weekly Syllabus)

المنهج الاسبوعي النظري

	Material Covered
Week 1-5	Signals and Systems, spectrum, and filters; Singularity functions; periodic signals and Fourier series; nonperiodic signals and Fourier transform. convolution and impulses system response and filters; correlation and spectral density; Parseval's theorem for energy signals
Week 6-8	Noise: Band-limited white noise; thermal noise; noise figure.
Week 9	Mid-term Exam
Week 10-12	Sampling: sampling theory and practice, aliasing.
Week 13-15	Transmission lines: characteristic impedance, reflection coefficient and standing waves
Week 16	Final exam

Required Texts	"Introduction to Communication Systems" By F. G. Strelmer
Recommended Texts	Sanjay Sharma: "Communication Systems (Analog and Digital) T. R. Ganesh Babu, and G. Srinivasan: " Communication Theory and systems", 2006

Al-Mustaql University / College of Engineering & Technology
Communication Technical Engineering Department
Class (Second)
Signal and System / Code (UOMU0207032)
Lecturer (Prof.Dr.Haider jabber Abd)
1st term – Lecture 1. (introduction to Signal and System)

Definitions

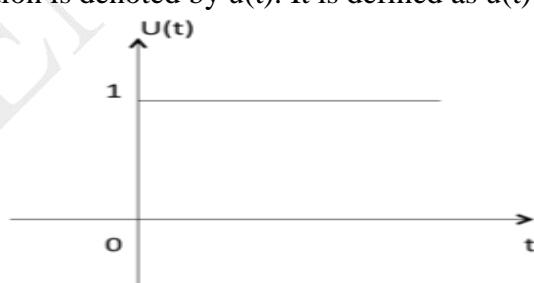
Signal : A signal describes a time varying physical phenomenon which is intended to convey information. (or) Signal is a function of time or any other variable of interest. (or) Signal is a function of one or more independent variables, which contain some information.

Example: voice signal, video signal, signals on telephone wires, EEG, ECG etc.

Signals may be of continuous time or discrete time signals.

System : System is a device or combination of devices, which can operate on signals and produces corresponding response. Input to a system is called as excitation and output from it is called as response. (or) System is a combination of sub units which will interact with each other to achieve a common interest.

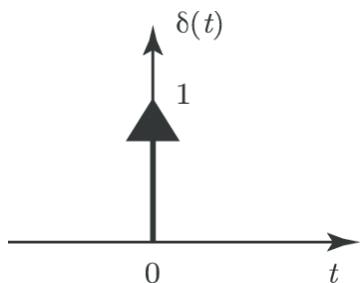
For one or more inputs, the system can have one or more outputs.


Example: Communication System

Elementary Signals or Basic Signals:

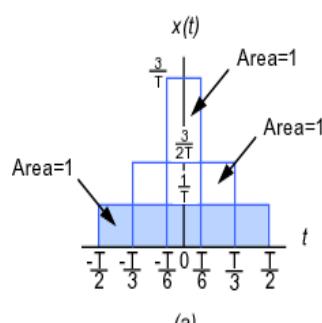
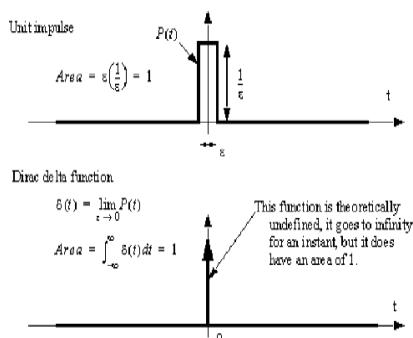
Unit Step Function

Unit step function is denoted by $u(t)$. It is defined as $u(t) = 1$ when $t \geq 0$ and 0 when $t < 0$

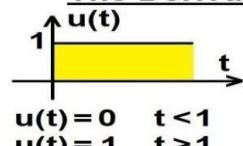

- It is used as best testsignal.
- Area under unit step function is unity.

Unit Impulse Function

Impulse function is denoted by $\delta(t)$ and it is defined as $\delta(t) = \begin{cases} 0; & t \neq 0 \\ \infty; & t = 0 \end{cases}$

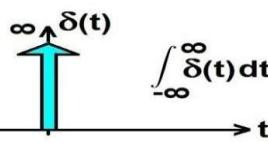


$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

◆ ◆ ◆


$$\int_{-\infty}^{\infty} \delta(t) dt = u(t)$$

$$\delta(t) = \frac{du(t)}{dt}$$

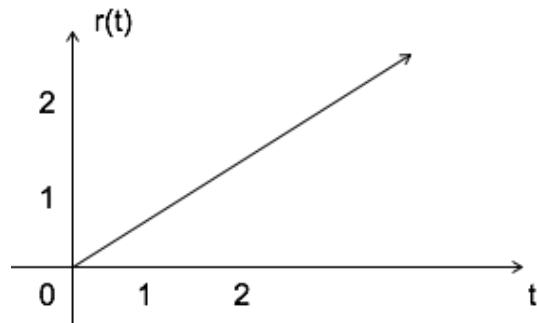
(a) (b)


The Derivative of an Unit Step Function

$$\frac{d}{dt} [u(t)] = ? \delta(t)$$

unit impulse function = delta function

$$\delta(t) = \begin{cases} 0 & t < 0 \\ \infty & t = 0 \\ 0 & t > 0 \end{cases}$$

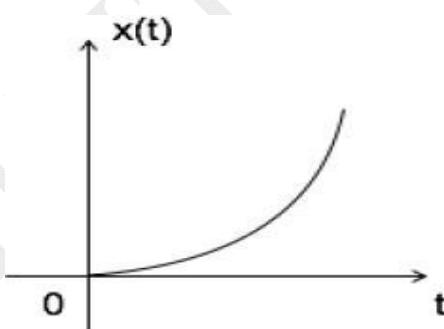


$$\int_{-\infty}^{\infty} \delta(t) dt = \int_{-0}^{+0} \delta(t) dt$$

Ramp Signal

Ramp signal is denoted by $r(t)$, and it is defined as $r(t) = \begin{cases} t & t \geq 0 \\ 0 & t < 0 \end{cases}$

$$\int u(t) = \int 1 = t = r(t)$$

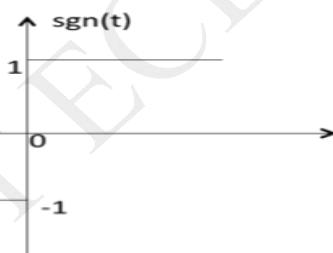

$$u(t) = \frac{dr(t)}{dt}$$

Area under unit ramp is unity.

Parabolic Signal

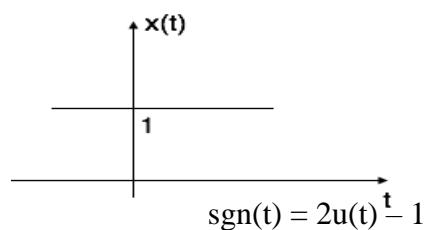
$$\begin{cases} t^2/2 & t \geq 0 \\ 0 & t < 0 \end{cases}$$

Parabolic signal can be defined as $x(t) =$


Al-Mustaql University / College of Engineering & Technology
Communication Technical Engineering Department
Class (Second)
Signal and System / Code (UOMU0207032)
Lecturer (Prof.Dr.Haider jabber Abd)
1st term – Lecture 1. (introduction to Signal and System)

$$\iint u(t)dt = \int r(t)dt = \int tdt = \frac{t^2}{2} = \text{parabolic signal}$$

$$\Rightarrow u(t) = \frac{d^2x(t)}{dt^2}$$

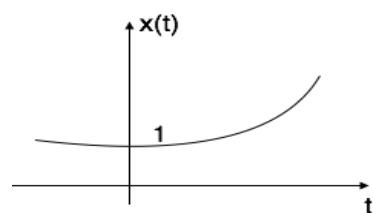
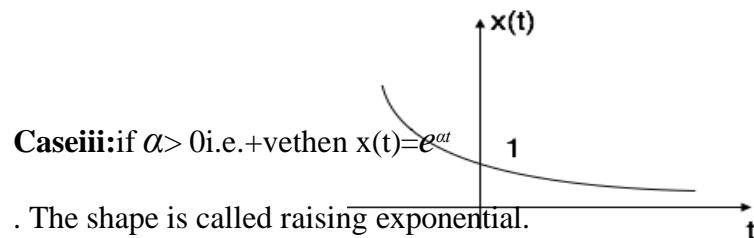

$$\Rightarrow r(t) = \frac{dx(t)}{dt}$$

$$\begin{cases} 1 & t > 0 \\ 0 & t = 0 \\ -1 & t < 0 \end{cases}$$

Signum Function

Signum function is denoted as $\text{sgn}(t)$. It is defined as $\text{sgn}(t) =$

Exponential Signal

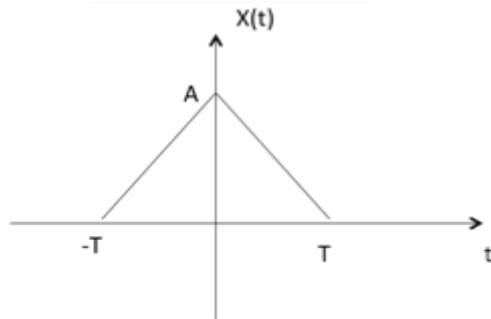


Exponential signal is in the form of $x(t) = e^{\alpha t}$

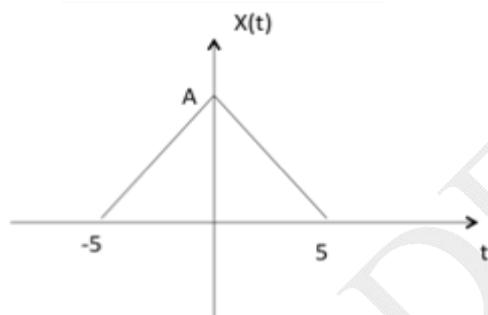
. The shape of exponential can be defined by α

Casei: if $\alpha = 0 \rightarrow x(t) = e^0 = 1$

Caseii: if $\alpha < 0$ i.e. -ve then $x(t) = e^{-\alpha t}$

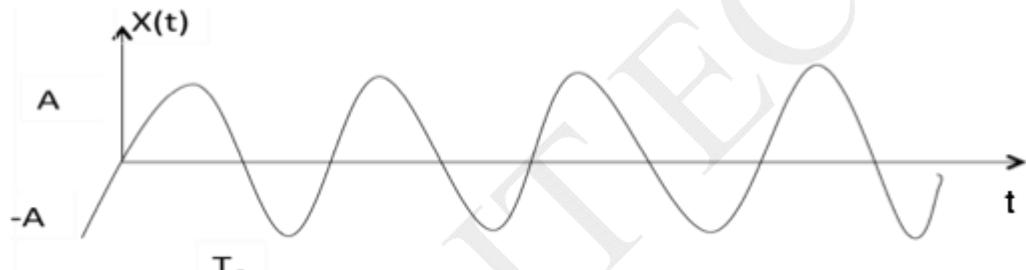
. The shape is called decaying exponential.




Triangular Signal

Let it be denoted as $x(t)$

$$x(t) = A \left[1 - \frac{|t|}{T} \right]$$



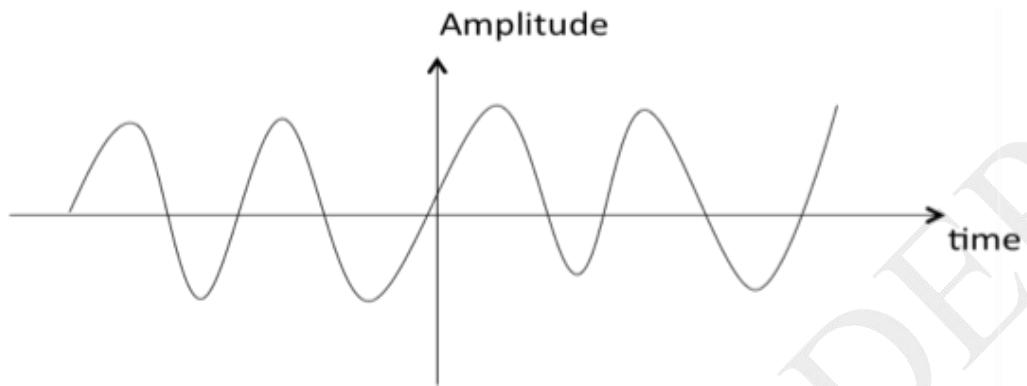
$$\text{ex: } x(t) = A \left[1 - \frac{|t|}{5} \right]$$

Sinusoidal Signal

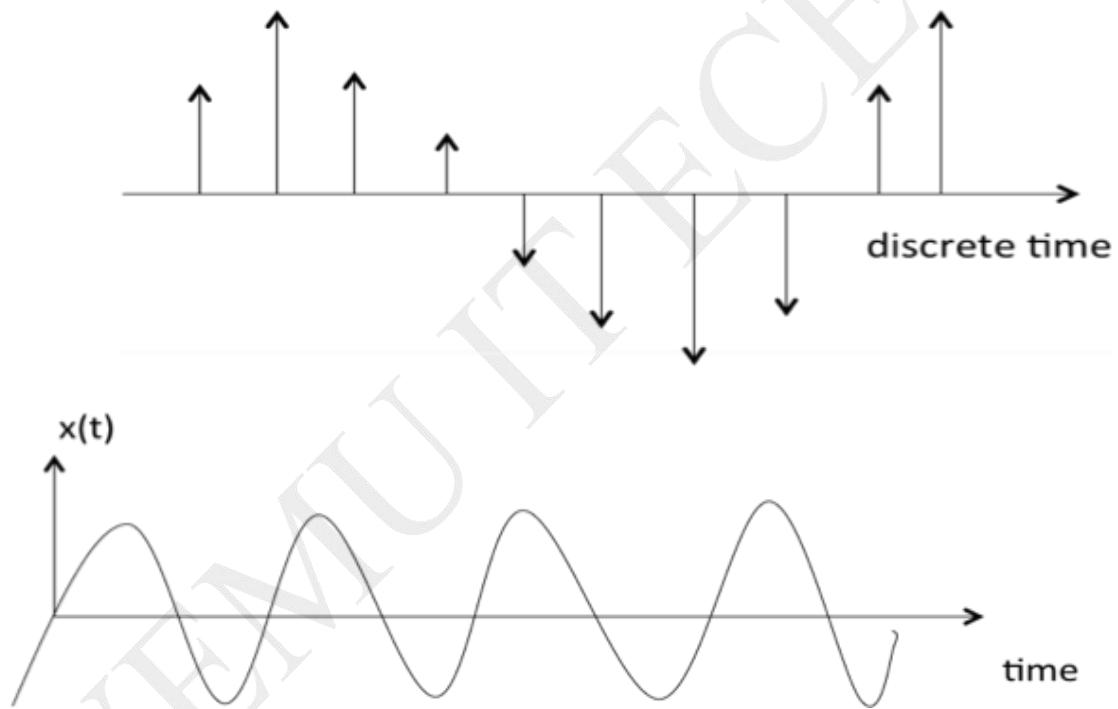
Sinusoidal signal is in the form of $x(t) = A \cos(\omega_0 t + \varphi)$ or $A \sin(\omega_0 t + \varphi)$

Where $T_0 = 2\pi/\omega_0$

Classification of Signals:


Signals are classified into the following categories:

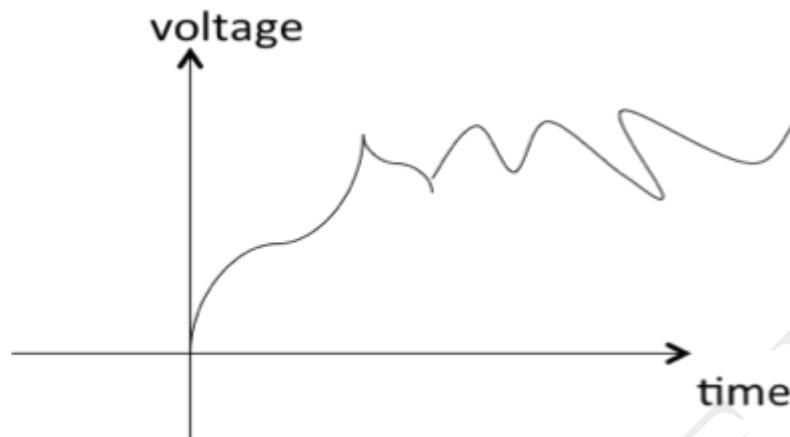
- Continuous Time and Discrete Time Signals
- Deterministic and Non-deterministic Signals
- Even and Odd Signals
- Periodic and Aperiodic Signals
- Energy and Power Signals



Continuous Time and Discrete Time Signals

A signal is said to be continuous when it is defined for all instants of time.

A signal is said to be discrete when it is defined at only discrete instants of time/



Deterministic and Non-deterministic Signals

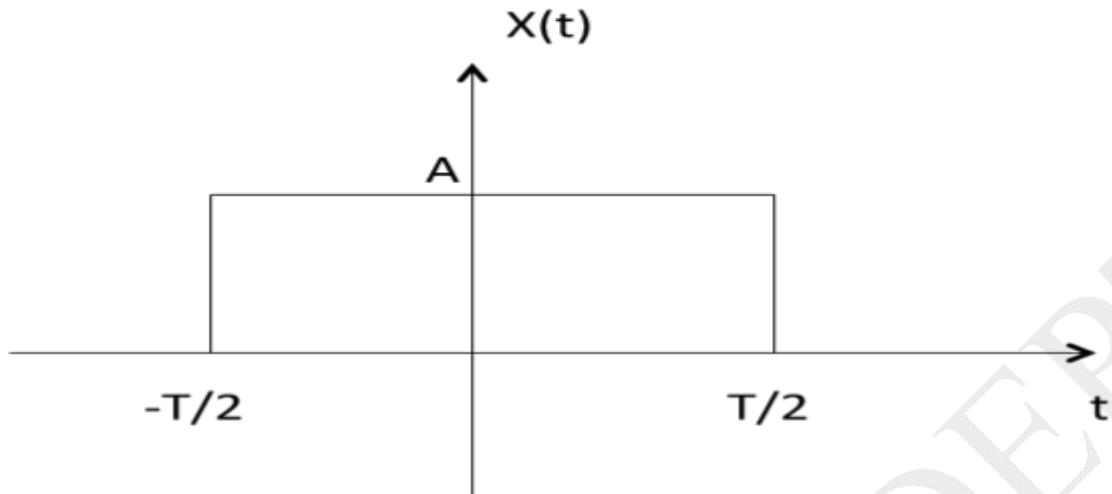
A signal is said to be deterministic if there is no uncertainty with respect to its value at any instant of time. Or, signals which can be defined exactly by a mathematical formula are known as deterministic signals.

A signal is said to be non-deterministic if there is uncertainty with respect to its value at some instant of time. Non-deterministic signals are random in nature hence they are called random signals. Random signals cannot be described by a mathematical equation. They are modelled in probabilistic terms.

Even and Odd Signals

A signal is said to be even when it satisfies the condition $x(t) = x(-t)$

Example 1: $t^2, t^4 \dots$ cost etc.


Let $x(t) = t^2$

$$x(-t) = (-t)^2 = t^2 = x(t)$$

$\therefore t^2$ is even function

Example 2: As shown in the following diagram, rectangle function $x(t) = x(-t)$ so it is also even function.

A signal is said to be odd when it satisfies the condition $x(t) = -x(-t)$

Example: $t, t^3 \dots$ And $\sin t$

Let $x(t) = \sin t$

$$x(-t) = \sin(-t) = -\sin t = -x(t)$$

$\therefore \sin t$ is odd function.

Any function $f(t)$ can be expressed as the sum of its even function $f_e(t)$ and odd function $f_o(t)$.

$$f(t) = f_e(t) + f_o(t)$$

where

$$f_e(t) = \frac{1}{2}[f(t) + f(-t)]$$

Al-Mustaql University / College of Engineering & Technology
Communication Technical Engineering Department
Class (Second)
Signal and System / Code (UOMU0207032)
Lecturer (Prof.Dr.Haider jabber Abd)
1stterm – Lecture 1. (introduction to Signal and System)

Periodic and Aperiodic Signals

A signal is said to be periodic if it satisfies the condition $x(t) = x(t + T)$ or $x(n) = x(n + N)$.

Where

T = fundamental time period,

$1/T = f$ = fundamental frequency.

Al-Mustaql University / College of Engineering & Technology
Communication Technical Engineering Department
Class (Second)
Signal and System / Code (UOMU0207032)
Lecturer (Prof.Dr.Haider jabber Abd)
1stterm – Lecture 1. (introduction to Signal and System)

The above signal will repeat for every time interval T_0 hence it is periodic with period T_0 .

Energy and Power Signals

A signal is said to be energy signal when it has finite energy.

A signal is said to be power signal when it has finite power.

NOTE: A signal cannot be both, energy and power simultaneously. Also, a signal may be neither energy nor power signal.

Power of energy signal = 0

Energy of power signal = ∞

Real and Imaginary Signals

A signal is said to be real when it satisfies the condition $x(t) = x^*(t)$

A signal is said to be odd when it satisfies the condition $x(t) = -x^*(t)$

Example:

If $x(t) = 3$ then $x^*(t) = 3^* = 3$ here $x(t)$ is a real signal.

If $x(t) = 3j$ then $x^*(t) = 3j^* = -3j = -x(t)$ hence $x(t)$ is a odd signal.

Note: For a real signal, imaginary part should be zero. Similarly for an imaginary signal, real part should be zero.