

The Cylindrical Coordinate System (ρ, θ, z)

The circular cylindrical coordinate system is very convenient whenever we are dealing with problems having cylindrical symmetry. A vector \vec{A} in cylindrical coordinates can be written as:

$$\vec{A} = A_\rho \mathbf{a}_\rho + A_\theta \mathbf{a}_\theta + A_z \mathbf{a}_z$$

Where \mathbf{a}_ρ , \mathbf{a}_θ , \mathbf{a}_z are unit vectors in the ρ , θ , and z -directions as illustrated in Figure 1.

The magnitude of \vec{A} as:

$$|\vec{A}| = \sqrt{A_\rho^2 + A_\theta^2 + A_z^2}$$

A point P in cylindrical coordinates is represented as (ρ, θ, z) and is as shown in Figure 1. Observe Figure 1. closely and note how we define each space variable: ρ is the radius of the cylinder passing through P or the radial distance from the z -axis θ ; is (called the azimuthal angle) measured from the x -axis in the xy -plane; and z is the same as in the Cartesian system

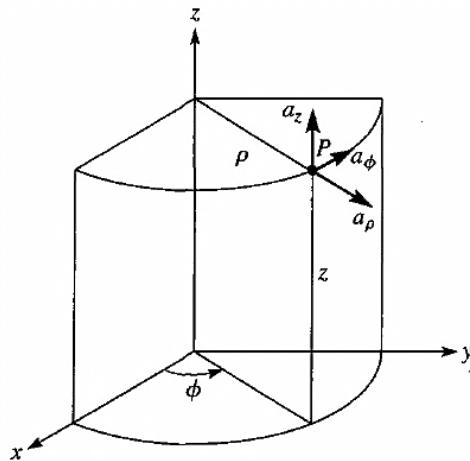


Figure 1. Point P and unit vectors in the cylindrical coordinate system

Notice that the unit vectors a_ρ , a_ϕ , a_z are mutually perpendicular since our coordinate system is orthogonal ; a_ρ points in the direction of increasing ρ , a_ϕ in the direction of increasing ϕ , and z in the positive z -direction. Thus

$$\mathbf{a}_\rho \cdot \mathbf{a}_\rho = \mathbf{a}_\phi \cdot \mathbf{a}_\phi = \mathbf{a}_z \cdot \mathbf{a}_z = 1$$

$$\mathbf{a}_\rho \cdot \mathbf{a}_\phi = \mathbf{a}_\phi \cdot \mathbf{a}_z = \mathbf{a}_z \cdot \mathbf{a}_\rho = 0$$

$$\mathbf{a}_\rho \times \mathbf{a}_\phi = \mathbf{a}_z$$

$$\mathbf{a}_\phi \times \mathbf{a}_z = \mathbf{a}_\rho$$

$$\mathbf{a}_z \times \mathbf{a}_\rho = \mathbf{a}_\phi$$

Note Also from Figure 1. that in cylindrical coordinate, differential element can be found:

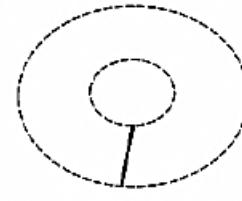
- Differential displacement is given by:

$$d\vec{L} = d\rho \mathbf{a}_\rho$$

$$d\vec{L} = \rho d\phi \mathbf{a}_\phi$$

$$d\vec{L} = dz \mathbf{a}_z$$

$$\text{or } d\vec{L} = d\rho \mathbf{a}_\rho + \rho d\phi \mathbf{a}_\phi + dz \mathbf{a}_z$$



$$dL = d\rho a_\rho$$

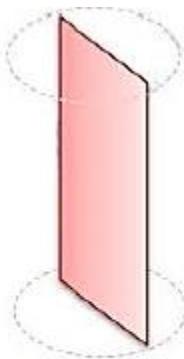
$$\text{Ring } dL = \rho d\phi a_\phi$$

b. Differential normal area is given by:

$$d\vec{S} = \rho d\phi dz \mathbf{a}_\rho$$

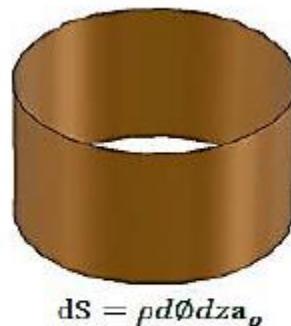
$$d\vec{S} = d\rho dz \mathbf{a}_\phi$$

$$d\vec{S} = \rho d\rho d\phi \mathbf{a}_z$$



$$dS = \rho d\phi d\rho a_z$$

$$dS = d\rho d_z a_\phi$$



$$dS = \rho d\phi dz a_\rho$$

c. Differential volume is given by:

$$dV = \rho d\rho d\phi dz$$

d. The distance between two points in cylindrical coordinate $P_1(\rho_1, \phi_1, z_1)$ and $P_2(\rho_2, \phi_2, z_2)$ is given by

$$d = \sqrt{\rho_1^2 + \rho_2^2 - 2\rho_1\rho_2 \cos(\phi_2 - \phi_1) + (z_2 - z_1)^2}$$

➤ Cylindrical to Cartesian Coordinate Transformation

The relationships between the variables (ρ, ϕ, z) of the cylindrical coordinate system and those of the Cartesian system (x, y, z) are easily obtained as

$$x = \rho \cos \phi, \quad y = \rho \sin \phi, \quad z = z$$

In matrix form, we have transformation of vector \vec{A}

$$\text{From cylindrical coordinate} \quad \vec{A} = A_\rho \mathbf{a}_\rho + A_\phi \mathbf{a}_\phi + A_z \mathbf{a}_z$$

$$\text{To Cartesian coordinate} \quad \vec{A} = A_x \mathbf{a}_x + A_y \mathbf{a}_y + A_z \mathbf{a}_z \quad \text{as}$$

$$\begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_\rho \\ A_\phi \\ A_z \end{bmatrix}$$

➤ Cartesian to Cylindrical Coordinate Transformation

The relationships between the variables (x, y, z) of the Cartesian coordinate system and those of the cylindrical system (ρ, ϕ, z) are easily obtained as

$$\rho = \sqrt{x^2 + y^2} \quad , \quad \phi = \tan^{-1} \frac{y}{x}, \quad z = z$$

In matrix form, we have transformation of vector \vec{A}

From Cartesian coordinate $\vec{A} = A_x \mathbf{a}_x + A_y \mathbf{a}_y + A_z \mathbf{a}_z$

To cylindrical coordinate $\vec{A} = A_\rho \mathbf{a}_\rho + A_\phi \mathbf{a}_\phi + A_z \mathbf{a}_z$ as

$$\begin{bmatrix} A_\rho \\ A_\phi \\ A_z \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix}$$

Example: Given point $P(-2, 6, 3)$ and vector $\vec{A} = y\alpha_x + (x + z)\alpha_y$, express P and \vec{A} in cylindrical coordinate. Evaluate \vec{A} at P in Cartesian and cylindrical system?

Solution: The vector \vec{A} in Cartesian coordinate at P is:

$$\vec{A} = 6\alpha_x + (-2 + 3)\alpha_y = 6\alpha_x + \alpha_y$$

$$|\vec{A}| = \sqrt{6^2 + 1^2} = 6.08$$

The point P in cylindrical coordinate is:

$$\rho = \sqrt{x^2 + y^2} = \sqrt{2^2 + 6^2} = 6.324$$

$$\phi = \tan^{-1} \frac{y}{x} = \tan^{-1} \frac{6}{-2} = 108.43^\circ$$

$$z = z = 3$$

$$P(6.324, 108.430^\circ, 3)$$

$$\begin{bmatrix} A_\rho \\ A_\theta \\ A_z \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ x+z \\ 0 \end{bmatrix}$$

But $x = \rho \cos \theta$, $y = \rho \sin \theta$, $z = z$ and substituting these yields

$$\begin{bmatrix} A_\rho \\ A_\theta \\ A_z \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \rho \sin \theta \\ \rho \cos \theta + z \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} A_\rho \\ A_\theta \\ A_z \end{bmatrix} = \begin{bmatrix} \rho \sin \theta \cos \theta + \rho \cos \theta \sin \theta + z \sin \theta \\ -\rho \sin^2 \theta + \rho \cos^2 \theta + z \cos \theta \\ 0 \end{bmatrix}$$

$$A_\rho = \rho \sin \theta \cos \theta + \rho \cos \theta \sin \theta + z \sin \theta$$

$$A_\theta = -\rho \sin^2 \theta + \rho \cos^2 \theta + z \cos \theta$$

$$A_z = 0$$

$$\vec{A} = A_\rho \mathbf{a}_\rho + A_\theta \mathbf{a}_\theta$$

\vec{A} at point P is:

$$A_\rho = 6.324 \sin 108.43 \cos 108.43 + 6.324 \cos 108.43 \sin 108.43 + 3 \sin 108.43 = -0.948$$

$$A_\theta = -6.324 \sin^2 108.43 + 6.324 \cos^2 108.43 + 3 \cos 108.43 = -6.008$$

$$\vec{A} = -0.948 \mathbf{a}_\rho - 6.008 \mathbf{a}_\theta$$

$$|\vec{A}| = \sqrt{(0.948)^2 + (6.008)^2} = 6.08$$

The Spherical Coordinate System (r, θ ,φ)

The Spherical coordinate system is most appropriate when dealing with problems having spherical symmetry. A vector \vec{A} in spherical coordinates can be written as:

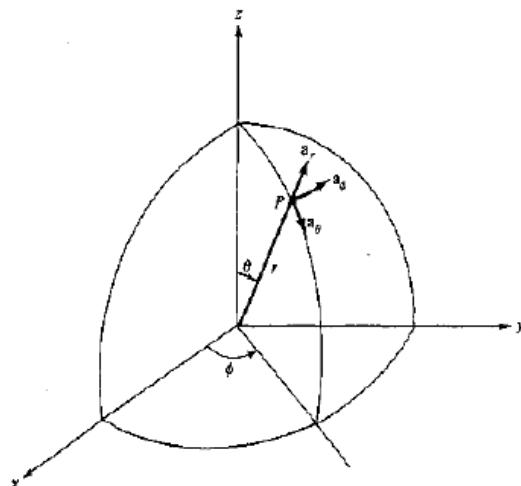
$$\vec{A} = A_r \mathbf{a}_r + A_\theta \mathbf{a}_\theta + A_\phi \mathbf{a}_\phi$$

Where \mathbf{a}_r , \mathbf{a}_θ \mathbf{a}_ϕ , are unit vectors in the r and θ -directions

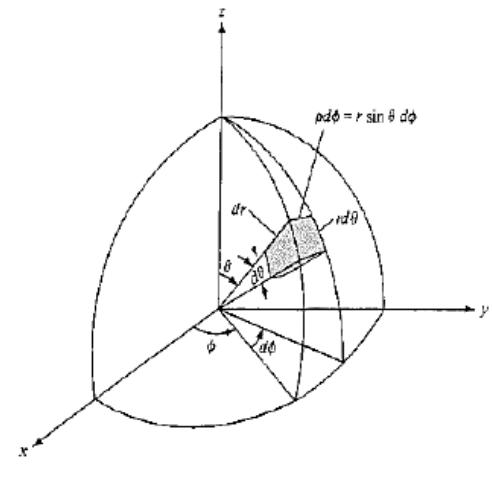
The magnitude of \vec{A} is:

$$|\vec{A}| = \sqrt{A_r^2 + A_\theta^2 + A_\phi^2}$$

A point P in spherical coordinates is represented as (r, θ, ϕ) and is illustrated in Figure 1.6 (a). From this Figure, we notice that r is defined as the distance from the origin to the point P or the radius of a sphere centred at the origin and passing through P; θ is the angle between the z-axis and the position vector of P; and ϕ is measured from the x-axis



(a)



(b)

Figure 1.6 Spherical coordinate system (a) Point P and unit vectors (b) Differential elements

Notice that the unit vectors \mathbf{a}_r , \mathbf{a}_θ , and \mathbf{a}_ϕ are mutually perpendicular since our coordinate system is orthogonal; \mathbf{a}_r points in the direction of increasing r , \mathbf{a}_θ in the direction of increasing θ , \mathbf{a}_ϕ and in the direction of increasing ϕ . Thus

$$\mathbf{a}_r \cdot \mathbf{a}_r = \mathbf{a}_\theta \cdot \mathbf{a}_\theta = \mathbf{a}_\phi \cdot \mathbf{a}_\phi = 1$$

$$\mathbf{a}_r \cdot \mathbf{a}_\theta = \mathbf{a}_\theta \cdot \mathbf{a}_\phi = \mathbf{a}_\phi \cdot \mathbf{a}_r = 0$$

$$\mathbf{a}_r \times \mathbf{a}_\theta = \mathbf{a}_\phi$$

$$\mathbf{a}_\theta \times \mathbf{a}_\phi = \mathbf{a}_r$$

$$\mathbf{a}_\phi \times \mathbf{a}_r = \mathbf{a}_\theta$$

From Figure 1.6 (b), we note that in spherical coordinate, differential element can be found:

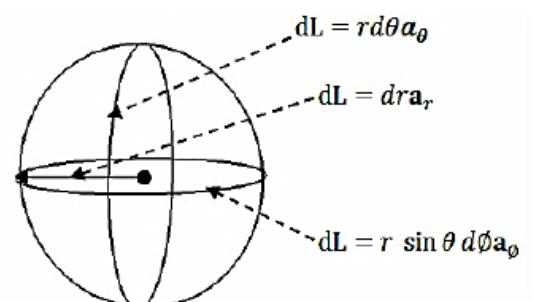
- Differential displacement is given by:

$$d\vec{L} = dr \mathbf{a}_r$$

$$d\vec{L} = r d\theta \mathbf{a}_\theta$$

$$d\vec{L} = r \sin \theta d\phi \mathbf{a}_\phi$$

Or $d\vec{L} = dr \mathbf{a}_r + r d\theta \mathbf{a}_\theta + r \sin \theta d\phi \mathbf{a}_\phi$

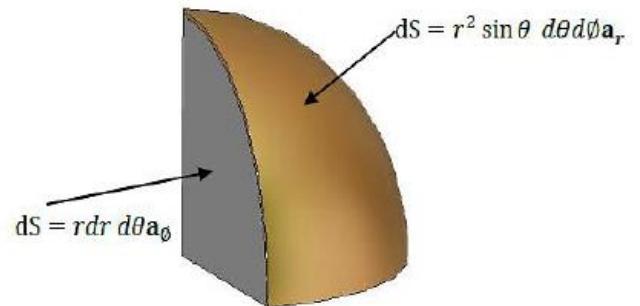


- Differential normal area is given by:

$$d\vec{S} = r^2 \sin \theta \, d\theta \, d\phi \, \mathbf{a}_r$$

$$d\vec{S} = r \sin \theta \, dr \, d\phi \, \mathbf{a}_\theta$$

$$d\vec{S} = r \, dr \, d\theta \, \mathbf{a}_\phi$$



- Differential volume is given by:

$$dV = r^2 \sin \theta \, dr \, d\theta \, d\phi$$

The distance between two points in spherical coordinate $P_1(r_1, \theta_1, \phi_1)$ and

$P_2(r_2, \theta_2, \phi_2)$ is given

$$d = \sqrt{r_1^2 + r_2^2 - 2r_1r_2 \cos \theta_2 \cos \theta_1 - 2r_1r_2 \sin \theta_2 \sin \theta_1 \cos(\phi_2 - \phi_1)}$$

➤ Cartesian to Spherical Coordinate Transformation

The relationships between the variables (x, y , z) of the Cartesian coordinate system and those of the Spherical system (r, θ , ϕ) are easily obtained as

$$r = \sqrt{x^2 + y^2 + z^2} \quad , \theta = \tan^{-1} \frac{\sqrt{x^2 + y^2}}{z}, \quad \phi = \tan^{-1} \frac{y}{x}$$

In matrix form, we have transformation of vector \vec{A}

From Cartesian coordinate $\vec{A} = A_x \mathbf{a}_x + A_y \mathbf{a}_y + A_z \mathbf{a}_z$

To Spherical coordinate $\vec{A} = A_r \mathbf{a}_r + A_\theta \mathbf{a}_\theta + A_\phi \mathbf{a}_\phi$ as

$$\begin{bmatrix} A_r \\ A_\theta \\ A_\phi \end{bmatrix} = \begin{bmatrix} \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\ -\sin \phi & \cos \phi & 0 \end{bmatrix} \begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix}$$

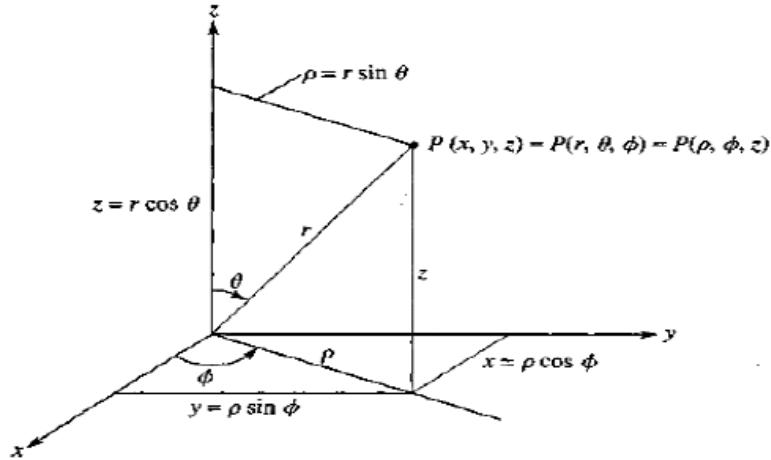


Figure 1.7: The relation between space variables (x, y, z) and (r, θ, ϕ)

➤ Spherical to Cartesian Coordinate Transformation

The relationships between the variables (r, θ, ϕ) of the spherical coordinate system and those of the Cartesian system (x, y, z) are easily obtained as

$$x = r \sin \theta \cos \phi, \quad y = r \sin \theta \sin \phi, \quad z = r \cos \theta$$

In matrix form, we have transformation of vector \vec{A}

From Spherical coordinate $\vec{A} = A_r \mathbf{a}_r + A_\theta \mathbf{a}_\theta + A_\phi \mathbf{a}_\phi$

To Cartesian coordinate $\vec{A} = A_x \mathbf{a}_x + A_y \mathbf{a}_y + A_z \mathbf{a}_z$ as

$$\begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix} = \begin{bmatrix} \sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\ \sin \theta \sin \phi & \cos \theta \sin \phi & \cos \phi \\ \cos \theta & -\sin \theta & 0 \end{bmatrix} \begin{bmatrix} A_r \\ A_\theta \\ A_\phi \end{bmatrix}$$

Example Given point P(-2, 6, 3) and vector $\mathbf{A} = y\mathbf{a}_x + (x+z)\mathbf{a}_y$, express P and A in cylindrical and spherical coordinates. Evaluate A at P in the Cartesian, cylindrical, and spherical systems.

Solution: At point P: $x = -2$, $y = 6$, $z = 3$. Hence,

$$\rho = \sqrt{x^2 + y^2} = \sqrt{4 + 36} = 6.32$$

$$\phi = \tan^{-1} \frac{y}{x} = \tan^{-1} \frac{6}{-2} = 108.43^\circ$$

$$z = 3$$

$$r = \sqrt{x^2 + y^2 + z^2} = \sqrt{4 + 36 + 9} = 7$$

$$\theta = \tan^{-1} \frac{\sqrt{x^2 + y^2}}{z} = \tan^{-1} \frac{\sqrt{40}}{3} = 64.62^\circ$$

Thus,

$$P(-2, 6, 3) = P(6.32, 108.43^\circ, 3) = P(7, 64.62^\circ, 108.43^\circ)$$

In the Cartesian system, \mathbf{A} at P is

$$\mathbf{A} = 6\mathbf{a}_x + \mathbf{a}_y$$

For vector \mathbf{A} , $A_x = y$, $A_y = x + z$, $A_z = 0$. Hence, in the cylindrical system

$$\begin{bmatrix} A_\rho \\ A_\phi \\ A_z \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ x + z \\ 0 \end{bmatrix}$$

or

$$A_\rho = y \cos \phi + (x + z) \sin \phi$$

$$A_\phi = -y \sin \phi + (x + z) \cos \phi$$

$$A_z = 0$$

But $x = \rho \cos \phi$, $y = \rho \sin \phi$, and substituting these yields

$$\begin{aligned} \mathbf{A} = (A_\rho, A_\phi, A_z) &= [\rho \cos \phi \sin \phi + (\rho \cos \phi + z) \sin \phi] \mathbf{a}_\rho \\ &\quad + [-\rho \sin^2 \phi + (\rho \cos \phi + z) \cos \phi] \mathbf{a}_\phi \end{aligned}$$

At P

$$\rho = \sqrt{40}, \quad \tan \phi = \frac{6}{-2}$$

Hence,

$$\cos \phi = \frac{-2}{\sqrt{40}}, \quad \sin \phi = \frac{6}{\sqrt{40}}$$

$$\begin{aligned} \mathbf{A} &= \left[\sqrt{40} \cdot \frac{-2}{\sqrt{40}} \cdot \frac{6}{\sqrt{40}} + \left(\sqrt{40} \cdot \frac{-2}{\sqrt{40}} + 3 \right) \cdot \frac{6}{\sqrt{40}} \right] \mathbf{a}_\rho \\ &\quad + \left[-\sqrt{40} \cdot \frac{36}{40} + \left(\sqrt{40} \cdot \frac{-2}{\sqrt{40}} + 3 \right) \cdot \frac{-2}{\sqrt{40}} \right] \mathbf{a}_\phi \\ &= \frac{-6}{\sqrt{40}} \mathbf{a}_\rho - \frac{38}{\sqrt{40}} \mathbf{a}_\phi = -0.9487 \mathbf{a}_\rho - 6.008 \mathbf{a}_\phi \end{aligned}$$

Similarly, in the spherical system

$$\begin{bmatrix} A_r \\ A_\theta \\ A_\phi \end{bmatrix} = \begin{bmatrix} \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\ -\sin \phi & \cos \phi & 0 \end{bmatrix} \begin{bmatrix} y \\ x + z \\ 0 \end{bmatrix}$$

or

$$A_r = y \sin \theta \cos \phi + (x + z) \sin \theta \sin \phi$$

$$A_\theta = y \cos \theta \cos \phi + (x + z) \cos \theta \sin \phi$$

$$A_\phi = -y \sin \phi + (x + z) \cos \phi$$

But $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, and $z = r \cos \theta$. Substituting these yields

$$\begin{aligned} \mathbf{A} &= (A_r, A_\theta, A_\phi) \\ &= r[\sin^2 \theta \cos \phi \sin \phi + (\sin \theta \cos \phi + \cos \theta) \sin \theta \sin \phi] \mathbf{a}_r \\ &\quad + r[\sin \theta \cos \theta \sin \phi \cos \phi + (\sin \theta \cos \phi + \cos \theta) \cos \theta \sin \phi] \mathbf{a}_\theta \\ &\quad + r[-\sin \theta \sin^2 \phi + (\sin \theta \cos \phi + \cos \theta) \cos \phi] \mathbf{a}_\phi \end{aligned}$$

At P

$$r = 7, \quad \tan \phi = \frac{6}{-2}, \quad \tan \theta = \frac{\sqrt{40}}{3}$$

Hence,

$$\cos \phi = \frac{-2}{\sqrt{40}}, \quad \sin \phi = \frac{6}{\sqrt{40}}, \quad \cos \theta = \frac{3}{7}, \quad \sin \theta = \frac{\sqrt{40}}{7}$$

$$\mathbf{A} = 7 \cdot \left[\frac{40}{49} \cdot \frac{-2}{\sqrt{40}} \cdot \frac{6}{\sqrt{40}} + \left(\frac{\sqrt{40}}{7} \cdot \frac{-2}{\sqrt{40}} + \frac{3}{7} \right) \cdot \frac{\sqrt{40}}{7} \cdot \frac{6}{\sqrt{40}} \right] \mathbf{a}_r$$

$$\begin{aligned} & + 7 \cdot \left[\frac{\sqrt{40}}{7} \cdot \frac{3}{7} \cdot \frac{6}{\sqrt{40}} \cdot \frac{-2}{\sqrt{40}} + \left(\frac{\sqrt{40}}{7} \cdot \frac{-2}{\sqrt{40}} + \frac{3}{7} \right) \cdot \frac{3}{7} \cdot \frac{6}{\sqrt{40}} \right] \mathbf{a}_\theta \\ & + 7 \cdot \left[\frac{-\sqrt{40}}{7} \cdot \frac{36}{40} + \left(\frac{\sqrt{40}}{7} \cdot \frac{-2}{\sqrt{40}} + \frac{3}{7} \right) \cdot \frac{-2}{\sqrt{40}} \right] \mathbf{a}_\phi \\ & = \frac{-6}{7} \mathbf{a}_r - \frac{18}{7\sqrt{40}} \mathbf{a}_\theta - \frac{38}{\sqrt{40}} \mathbf{a}_\phi \\ & = -0.8571 \mathbf{a}_r - 0.4066 \mathbf{a}_\theta - 6.008 \mathbf{a}_\phi \end{aligned}$$

Note that $|\mathbf{A}|$ is the same in the three systems; that is,

$$|\mathbf{A}(x, y, z)| = |\mathbf{A}(\rho, \phi, z)| = |\mathbf{A}(r, \theta, \phi)| = 6.083$$

3. Transfer the vector $\vec{A} = 10 \mathbf{a}_x$ to spherical coordinate at point $P(x = -3, y = 2, z = 4)$

$$\vec{A} = -5.5702 \mathbf{a}_r - 6.18 \mathbf{a}_\theta - 5.547 \mathbf{a}_\phi$$

4. Give the Cartesian coordinates of $\vec{H} = 20 \mathbf{a}_\rho - 10 \mathbf{a}_\phi + 3 \mathbf{a}_z$ at point $P(x = 5, y = 2, z = -1)$

$$\vec{H} = 22.282 \mathbf{a}_x - 1.856 \mathbf{a}_y + 3 \mathbf{a}_z$$