

Applications of Gauss's Law

The procedure for applying Gauss's law to calculate the electric field involves first knowing whether symmetry exists. Once symmetric charge distribution exists, we construct a mathematical closed surface (known as a *Gaussian surface*). The surface over which Gauss's law is applied must be closed, but it can be made up of several surface elements. Thus the defining

conditions of a special Gaussian surface are

a- The surface is closed.

b- At each point of the surface \vec{D} is either normal or tangential to the surface, so that

$(\vec{D} \cdot d\vec{S})$ becomes either $(\vec{D} \cdot d\vec{S})$ or (zero), respectively

c- \vec{D} is sectional constant over that part of the surface where \vec{D} is normal.

Symmetrical Charge Distributions

1. Point Charge.

Suppose a point charge Q is located at the origin. To determine D at a point P , it is easy to see that choosing a spherical surface containing P will satisfy symmetry conditions. Thus, a *spherical surface* centered at the origin is the *Gaussian surface* in this case and is shown in Figure 1

$$\Psi = \oint_S \vec{D}_S \cdot d\vec{S} = D_r \oint d\vec{S}$$

$$\Psi = D_r \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} r^2 \sin \theta \, d\theta \, d\phi = 4\pi r^2 D_r$$

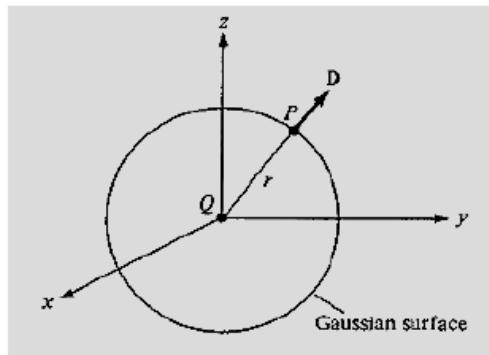


Figure 1 Gaussian surface about a point charge

$$Q_{\text{enclosed}} = Q$$

$$\Psi = Q_{\text{enclosed}}$$

$$4\pi r^2 D_r = Q$$

$$\vec{D} = \frac{Q}{4\pi r^2} \vec{a}_r$$

2. Infinite Line Charge

Suppose the infinite line of uniform charge ρ_L C/m lies along the z-axis. To determine D at a point P, we choose a *cylindrical surface* containing P to satisfy symmetry condition as shown in

Figure 2 . D is constant on and normal to the cylindrical Gaussian surface; i.e., $=D\rho \hat{a}_\rho$. If we apply Gauss's law to an arbitrary length L of the line

$$\Psi = \int \vec{D}_S \cdot d\vec{S} = D_\rho \int d\vec{S}$$

$$\Psi = \vec{D}_\rho \int_{z=0}^l \int_{\theta=0}^{2\pi} \rho d\theta dz$$

$$\Psi = 2\pi \rho l D_\rho$$

$$Q_{enclosed} = \int \rho_L dl$$

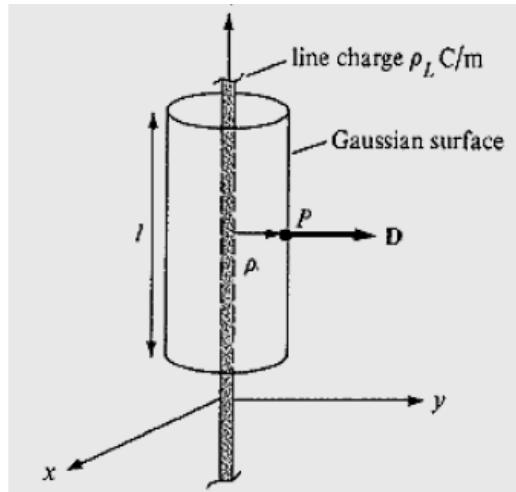


Figure 2. Gaussian surface about an infinite line

$$Q_{enclosed} = \rho_L \int_{z=0}^l dz = l \rho_L$$

$$\Psi = Q_{enclosed}$$

$$2\pi \rho l D_\rho = l \rho_L$$

$$D_\rho = \frac{\rho_L}{2\pi \rho}$$

$$\vec{D} = \frac{\rho_L}{2\pi \rho} \vec{a}_\rho$$

3. Uniformly Charged Sphere

Consider a sphere of radius a with a uniform charge ρ_v C/m³. To determine D everywhere, we construct Gaussian surfaces for cases $r < a$, and $r > a$ separately. Since the charge has spherical symmetry, it is obvious that a spherical surface is an appropriate Gaussian surface.

For $r < a$, the total charge enclosed by the spherical surface of radius r , as shown in Figure 3. (a), is

$$\Psi = \oint \vec{D}_S \cdot d\vec{S} = \vec{D}_r \oint d\vec{S} = \vec{D}_r \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} r^2 \sin \theta \, d\theta d\phi = 4\pi r^2 \vec{D}_r$$

$$Q_{\text{enclosed}} = \int_{\text{vol}} \rho_v \, dv = \rho_v \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} \int_{0}^r r^2 \sin \theta \, d\theta d\phi \, dr = \frac{4}{3} \rho_v \pi r^3$$

$$\Psi = Q_{\text{enclosed}} \quad (\text{Gauss's Law})$$

$$4\pi r^2 \vec{D}_r = \frac{4}{3} \rho_v \pi r^3$$

$$\vec{D}_r = \frac{\rho_v}{3} r$$

$$\vec{D} = \frac{\rho_v}{3} r \, \vec{a}_r \quad (r < a)$$

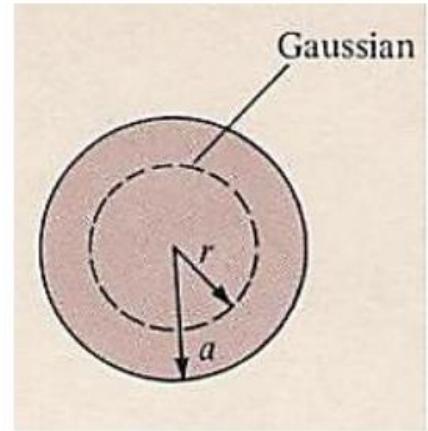


Figure 3.(a)

For $r \geq a$, the Gaussian surface is shown in Figure 3.(b). The charge enclosed by the surface is the entire charge in this case, i.e.,

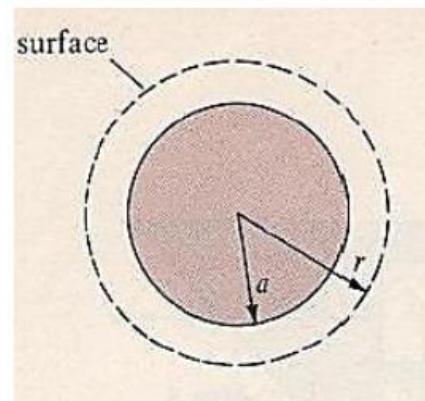
$$Q_{enclosed} = \int_{vol} \rho_v dv = \rho_v \int_{\theta=0}^{2\pi} \int_{\phi=0}^{\pi} \int_{r=0}^a r^2 \sin \theta d\theta d\phi dr = \frac{4}{3} \rho_v \pi a^3$$

$$\Psi = Q_{enclosed} \quad (Gauss's\ Law)$$

$$4\pi r^2 \vec{D}_r = \frac{4}{3} \rho_v \pi a^3$$

$$\vec{D}_r = \frac{a^3}{3 r^2} \rho_v$$

$$\vec{D} = \frac{a^3}{3 r^2} \rho_v \ \mathbf{a}_r \quad (r \geq a)$$



Example: A uniform line charge of $\rho_L = 3\mu \text{ C/m}$ lies along the z axis, and a concentric circular cylinder of radius 2 m has $\rho_s = \frac{-1.5}{4\pi} \mu\text{C/m}^2$. Both distributions are infinite in extent with z. Use Gauss's law to find D in all regions?

Solution:

1 – The region $0 < \rho < 2$

Using Gaussian surface cylinder ρ

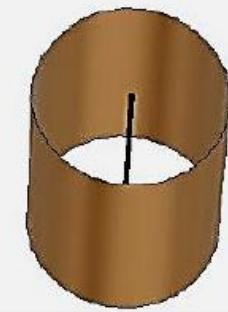
$$\Psi = Q_{\text{enclosed}}$$

$$\Psi = D_\rho \int_{z=0}^L \int_{\phi=0}^{2\pi} \rho d\phi dz = 2\pi\rho L D_\rho$$

$$Q_{\text{enclosed}} = \int \rho_L dL = \rho_L \int_{z=0}^L dz = L \rho_L$$

$$2\pi\rho L D_\rho = L \rho_L$$

$$D = \frac{\rho_L}{2\pi\rho} \mathbf{a}_\rho = \frac{3 \times 10^{-6}}{2\pi\rho} \mathbf{a}_\rho = \frac{0.477}{\rho} \mathbf{a}_\rho \quad \mu \text{ C/m}^2$$



2 – The region $2 < \rho$

$$Q_{\text{enclosed}} = Q_1 + Q_2$$

$$Q_1 = L \rho_L$$

$$Q_2 = \int \rho_s dS$$

$$Q_2 = \rho_s \int_0^L \int_0^{2\pi} \rho d\phi dz = 2 \times 2\pi \times L \times \rho_s = 4\pi L \rho_s$$

$$Q_{\text{enclosed}} = Q_1 + Q_2 = L \rho_L + 4\pi L \rho_s$$

$$\Psi = Q_{\text{enclosed}}$$

$$2\pi\rho L D_\rho = L \rho_L + 4\pi L \rho_s$$

$$D = \frac{\rho_L + 4\pi\rho_s}{2\pi\rho} a_\rho = \frac{0.239}{\rho} a_\rho \quad \mu C/m^2$$

ASSIST . LECT . AYAT AYAD HUSSEIN

1ST TERM (APPLICATIONS OF GAUSS'S LAW)

ELECTROMAGNETIC STATIC FIELDS/(CODE)(UOMU0207035)

Example: A point charge $Q=2\pi c$ at the origin , a volume charge density of $4 c/m^3$ at the region

$1 \leq r \leq 3$ and a sheet of charge $-6 c/m^2$ has $r = 4$, Find D at $r = 0.5$, $r = 2$, $r = 5$?

Solution:

D at $r = 0.5$

D is due to a point charge

$$D = \frac{Q}{4\pi r^2} \mathbf{a}_r = \frac{2\pi}{4\pi(0.5)^2} \mathbf{a}_r = 2 \mathbf{a}_r$$

D at $r = 2$

$\Psi = Q_{\text{enclosed}}$

$$\Psi = 4\pi r^2 D_r$$

$$Q_{\text{enclosed}} = Q_1 + Q_2$$

$$Q_2 = \int_{\text{vol}} \rho_v d_v = 4 \int_0^{2\pi} \int_0^\pi \int_1^2 r^2 \sin \theta dr d\theta d\phi = 4 * 2 * 2\pi * \left[\frac{r^3}{3} \right]_1^2 = \frac{112\pi}{3}$$

$$\therefore 4\pi r^2 D_r = 2\pi + \frac{112\pi}{3}$$

$$D = \frac{39.33}{4(2)^2} \mathbf{a}_r = 2.45 \mathbf{a}_r$$

D at $r = 5$

$$Q_{\text{enclosed}} = Q_1 + Q_2 + Q_3$$

$$Q_2 = 4 * 2 * 2\pi * \left[\frac{r^3}{3} \right]_1^5 = \frac{416\pi}{3}$$

$$Q_3 = \int \rho_s dS = -6 \int_0^{2\pi} \int_0^\pi r^2 \sin \theta d\theta d\phi = -6 * (4)^2 * 2\pi * 2 = -384\pi$$

$$\therefore 4\pi r^2 D_r = 2\pi + \frac{416\pi}{3} - 384\pi = -243.33\pi$$

$$D_r = \frac{-243.33\pi}{4\pi r^2} \mathbf{a}_r = \frac{-243.33}{4(5)^2} \mathbf{a}_r = -2.433 \mathbf{a}_r$$

