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Time-Independent Schrédinger Equation

In many physically interesting cases, the potential energy V is time-independent:
V =V(r).
In such cases, we may apply the method of separation of variables.

Assume that the total wave function can be written as a product:

Substituting into the Schrodinger equation yields separate equations for space and time,
each equal to a constant.

3/21



Derivation and Energy Constant

Starting from the time-dependent Schrédinger equation:

. Ov n _,
and using the separable form ¥(r,¢) = ¢ (r) f(t), we obtain:
df (t)

iha(r)

n_,
0 — 10|57+ V() ot
which separates the time and spatial parts. Dividing by ¢ (r)f(t) gives

1df  iE W, B

Integrating yields f(t) = e~ *F!/"; the second equation is the time-independent Schrédinger
equation (TISE).
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Eigenvalue Equation Form

Hy(r) = By(r), H= L +V(r).
2m
H acting on ) multiplies it by E; such an equation is an eigenvalue equation.
1 is an eigenfunction, E an eigenvalue.
The set of all E is the eigenvalue spectrum.

The problem of solving the Schrodinger equation reduces to finding eigenvalues and
eigenfunctions of H.
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Sometimes more than one linearly independent eigenfunction corresponds to the same
eigenvalue.

Such an eigenvalue is degenerate.

If there are k independent eigenfunctions for the same E, the eigenvalue is k-fold
degenerate.

Any linear combination of degenerate eigenfunctions is also an eigenfunction:

U=cVU4+coVUs+- -+ cp V.
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Reality of Eigenvalues

Let E be the eigenvalue corresponding to eigenfunction U:
HV = FEU.

The Hamiltonian H is a Hermitian operator.

Therefore, all energy eigenvalues are real.
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Stationary States

For a separable wavefunction, the probability density is

(O, )P = [p@)]? [f(OF = [vr)P,

which is independent of time.
These are called stationary states.

The expectation value of total energy equals the eigenvalue FE for all time if the
wavefunction is normalized.
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Orthogonality and Orthonormality

Eigenfunctions corresponding to distinct eigenvalues are orthogonal.

If normalized, we combine orthogonality with normalization:

. )1, k=n,
/wkwndT_{O, k # n.

This is the orthonormality condition.
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Parity in One Dimension

Suppose the potential is symmetric: V(—xz) = V (z).
Under the reflection © — —x (parity operation), Schrddinger’s equation is invariant.

If 1)(x) is an eigenfunction, 1(—x) is another eigenfunction with the same eigenvalue F.
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Even and Odd Wavefunctions

If the eigenvalue is nondegenerate, 1)(—x) and v (z) differ only by a constant.
Hence, eigenfunctions can be classified as:

(=) = +ip(x) (even), (=) =—4(x) (odd).
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MCQs (1-2)

Q1. For a time-independent potential V(r), the wavefunction can be written as:

A W(r,t) = $(r) + £(1)

B. W(r,t) =4(r)f(t)
C. U(r,t) =¢(r)t
D. W(r,t) =v(r) - f(t)
Q2. The separation constant appearing after separation of variables equals:
A. Momentum
B. Normalization constant
C. Energy E
D. Parity
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MCQs (3-4)

Q3.

O N w

Q4.

oo wr»

The time part of an energy eigenfunction is proportional to:
o—iBt/h

oTiEt/h
o—Et/h

ot EL/h

The time-independent Schrédinger equation is expressed as:

Hi = Ey
Py = th0yy
V2 =0
Hy = iE
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MCQs (5-6)

Q5. The complete set of all eigenvalues of H is the:
A. State space

o

Eigenvalue spectrum

N

Configuration space

=

Momentum space

Q6. More than one independent eigenfunction with the same E means the level is:
Normalized
Stationary

Degenerate

Onw»

Orthogonal
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MCQs (7-8)

Q7. A linear combination of degenerate eigenfunctions is:
A. Not an eigenfunction
B. An eigenfunction with the same eigenvalue
C. An eigenfunction with a different eigenvalue

D. Only approximately an eigenfunction

Q8. Hermiticity of H ensures that:
Energy eigenvalues are always complex
Energy eigenvalues are always real

Energy eigenvalues are imaginary

Onw»

Energy eigenvalues are arbitrary
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MCQs (9-10)

Q9. For U = tpe~Ft/7 the probability density is:
A. Time-dependent
B. Constant in time

C. Exponentially decaying

D. Oscillatory

Q10. The expectation value of H for a normalized eigenstate equals:
A . h

B. 0

C. The eigenvalue E
D. Only kinetic energy
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MCQs (11-12)

Q11. Eigenfunctions of distinct eigenvalues are:
A. Orthogonal

B. Parallel

C. Equal

D. Arbitrary

Q12. The orthonormality condition is:
A. fw,’g;bn dr = Opn

B. f¢k¢n dr=1
C. [|¢n?dr=0
D. wk = wn
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MCQs (13-14)

Q13. For V(—z) = V(z), the system is symmetric under:
A. Time reversal

B. Parity operation

C. Translation

D. Scaling

Q14. Nondegenerate energy levels in even potentials correspond to eigenfunctions that are:
A. Even or odd
B. Only even
C. Only odd
D. Neither even nor odd

18/21



MCQs (15-16)

Q15. The parity relation for even and odd functions is:

A. (=) = +i(x) or P(—x) = —¢(x)
B. ¢(—x) = ip(x)
C. (-x) =w*(x)
D. ¢(—x) =
Q16. The one-dimensional Schrodinger equation is:
A B> d*y \% =F
-y T V()Y =By
_a
B. ih—, — Hy
C. pyp = —Zhi;p
D. V2 =0
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MCQs (17-18)

Q17. If ¢1,15 are orthogonal eigenfunctions with the same E, c191 + cotbs is:
A. Not normalizable
B. An eigenfunction with eigenvalue F
C. An eigenfunction with eigenvalue E; + F»
D. Purely imaginary

Q18. The 3D Hamiltonian operator is:

. h2 )
AL H=——
va + V(r)

. 0
B. H =ih—
ot
CH=V+V
D. I:I:I‘
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MCQs (19-20)

Q19. Hermiticity of H implies:

A.
B.
C.
D.

Real measurable energies
Imaginary eigenvalues
Infinite degeneracy

Random phases

Q20. Stationary states have:

A.

Constant probability density

B. Decaying probability density
C.
D

. Nonconserved energy

Increasing momentum
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