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Time-Independent Schrödinger Equation

In many physically interesting cases, the potential energy V is time-independent:

V = V (r).

In such cases, we may apply the method of separation of variables.

Assume that the total wave function can be written as a product:

Ψ(r, t) = ψ(r)f(t).

Substituting into the Schrödinger equation yields separate equations for space and time,

each equal to a constant.
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Derivation and Energy Constant

Starting from the time-dependent Schrödinger equation:

iℏ
∂Ψ

∂t
= − ℏ2

2m
∇2Ψ+ V (r)Ψ

and using the separable form Ψ(r, t) = ψ(r)f(t), we obtain:

iℏψ(r)
df(t)

dt
= f(t)

[
− ℏ2

2m
∇2 + V (r)

]
ψ(r)

which separates the time and spatial parts. Dividing by ψ(r)f(t) gives

1

f

df

dt
= − iE

ℏ
,

[
− ℏ2

2m
∇2 + V (r)

]
ψ = Eψ.

Integrating yields f(t) = e−iEt/ℏ; the second equation is the time-independent Schrödinger
equation (TISE).
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Eigenvalue Equation Form

Ĥψ(r) = Eψ(r), Ĥ = − ℏ2

2m
∇2 + V (r).

Ĥ acting on ψ multiplies it by E; such an equation is an eigenvalue equation.

ψ is an eigenfunction, E an eigenvalue.

The set of all E is the eigenvalue spectrum.

The problem of solving the Schrödinger equation reduces to �nding eigenvalues and

eigenfunctions of Ĥ.
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Degeneracy

Sometimes more than one linearly independent eigenfunction corresponds to the same

eigenvalue.

Such an eigenvalue is degenerate.

If there are k independent eigenfunctions for the same E, the eigenvalue is k-fold
degenerate.

Any linear combination of degenerate eigenfunctions is also an eigenfunction:

Ψ = c1Ψ1 + c2Ψ2 + · · ·+ ckΨk.
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Reality of Eigenvalues

Let E be the eigenvalue corresponding to eigenfunction Ψ:

ĤΨ = EΨ.

The Hamiltonian Ĥ is a Hermitian operator.

Therefore, all energy eigenvalues are real.
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Stationary States

For a separable wavefunction, the probability density is

|Ψ(r, t)|2 = |ψ(r)|2 |f(t)|2 = |ψ(r)|2,

which is independent of time.

These are called stationary states.

The expectation value of total energy equals the eigenvalue E for all time if the

wavefunction is normalized.
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Orthogonality and Orthonormality

Eigenfunctions corresponding to distinct eigenvalues are orthogonal.

If normalized, we combine orthogonality with normalization:∫
ψ∗
kψn dτ =

{
1, k = n,

0, k ̸= n.

This is the orthonormality condition.

9 / 21



Parity in One Dimension

Suppose the potential is symmetric: V (−x) = V (x).

Under the re�ection x→ −x (parity operation), Schrödinger's equation is invariant.

If ψ(x) is an eigenfunction, ψ(−x) is another eigenfunction with the same eigenvalue E.
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Even and Odd Wavefunctions

If the eigenvalue is nondegenerate, ψ(−x) and ψ(x) di�er only by a constant.

Hence, eigenfunctions can be classi�ed as:

ψ(−x) = +ψ(x) (even), ψ(−x) = −ψ(x) (odd).
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MCQs (1�2)

Q1. For a time-independent potential V (r), the wavefunction can be written as:

A. Ψ(r, t) = ψ(r) + f(t)

B. Ψ(r, t) = ψ(r)f(t)

C. Ψ(r, t) = ψ(r)t

D. Ψ(r, t) = ψ(r)− f(t)

Q2. The separation constant appearing after separation of variables equals:

A. Momentum

B. Normalization constant

C. Energy E

D. Parity
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MCQs (3�4)

Q3. The time part of an energy eigenfunction is proportional to:

A. e−iEt/ℏ

B. e+iEt/ℏ

C. e−Et/ℏ

D. e+Et/ℏ

Q4. The time-independent Schrödinger equation is expressed as:

A. Ĥψ = Eψ

B. p̂ψ = iℏ∂xψ
C. ∇2ψ = 0

D. Ĥψ = iE
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MCQs (5�6)

Q5. The complete set of all eigenvalues of Ĥ is the:

A. State space

B. Eigenvalue spectrum

C. Con�guration space

D. Momentum space

Q6. More than one independent eigenfunction with the same E means the level is:

A. Normalized

B. Stationary

C. Degenerate

D. Orthogonal
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MCQs (7�8)

Q7. A linear combination of degenerate eigenfunctions is:

A. Not an eigenfunction

B. An eigenfunction with the same eigenvalue

C. An eigenfunction with a di�erent eigenvalue

D. Only approximately an eigenfunction

Q8. Hermiticity of Ĥ ensures that:

A. Energy eigenvalues are always complex

B. Energy eigenvalues are always real

C. Energy eigenvalues are imaginary

D. Energy eigenvalues are arbitrary
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MCQs (9�10)

Q9. For Ψ = ψe−iEt/ℏ, the probability density is:

A. Time-dependent

B. Constant in time

C. Exponentially decaying

D. Oscillatory

Q10. The expectation value of Ĥ for a normalized eigenstate equals:

A. ℏ
B. 0

C. The eigenvalue E

D. Only kinetic energy
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MCQs (11�12)

Q11. Eigenfunctions of distinct eigenvalues are:

A. Orthogonal

B. Parallel

C. Equal

D. Arbitrary

Q12. The orthonormality condition is:

A.
∫
ψ∗
kψn dτ = δkn

B.
∫
ψkψn dτ = 1

C.
∫
|ψn|2 dτ = 0

D. ψk = ψn
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MCQs (13�14)

Q13. For V (−x) = V (x), the system is symmetric under:

A. Time reversal

B. Parity operation

C. Translation

D. Scaling

Q14. Nondegenerate energy levels in even potentials correspond to eigenfunctions that are:

A. Even or odd

B. Only even

C. Only odd

D. Neither even nor odd
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MCQs (15�16)

Q15. The parity relation for even and odd functions is:

A. ψ(−x) = +ψ(x) or ψ(−x) = −ψ(x)
B. ψ(−x) = iψ(x)

C. ψ(−x) = ψ∗(x)

D. ψ(−x) = 0

Q16. The one-dimensional Schrödinger equation is:

A. − ℏ2

2m

d2ψ

dx2
+ V (x)ψ = Eψ

B. iℏ
∂ψ

∂t
= Ĥψ

C. p̂ψ = −iℏdψ
dx

D. ∇2ψ = 0
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MCQs (17�18)

Q17. If ψ1, ψ2 are orthogonal eigenfunctions with the same E, c1ψ1 + c2ψ2 is:

A. Not normalizable

B. An eigenfunction with eigenvalue E

C. An eigenfunction with eigenvalue E1 + E2

D. Purely imaginary

Q18. The 3D Hamiltonian operator is:

A. Ĥ = − ℏ2

2m
∇2 + V (r)

B. Ĥ = iℏ
∂

∂t

C. Ĥ = ∇+ V

D. Ĥ = r
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MCQs (19�20)

Q19. Hermiticity of Ĥ implies:

A. Real measurable energies

B. Imaginary eigenvalues

C. In�nite degeneracy

D. Random phases

Q20. Stationary states have:

A. Constant probability density

B. Decaying probability density

C. Increasing momentum

D. Nonconserved energy

21 / 21


	Time-Independent Schrödinger Equation (Stationary States)
	Degeneracy
	Reality of Eigenvalues
	Stationary States
	Orthogonality of Eigenfunctions
	Parity
	Multiple-Choice Questions (Lecture 6)

