

Quantum Mechanics in Medicine

Lecture 6

Prof. Dr. Fouad Attia Majeed
Department of Medical Physics, Al-Mustaqbal University
fouad.attia.majeed@uomus.edu.iq

Babil, Iraq

For Third-year Students

Outline

- 1 Time-Independent Schrödinger Equation (Stationary States)
- 2 Degeneracy
- 3 Reality of Eigenvalues
- 4 Stationary States
- 5 Orthogonality of Eigenfunctions
- 6 Parity
- 7 Multiple-Choice Questions (Lecture 6)

Time-Independent Schrödinger Equation

In many physically interesting cases, the potential energy V is time-independent: $V = V(\mathbf{r})$.

In such cases, we may apply the **method of separation of variables**.

Assume that the total wave function can be written as a product:

$$\Psi(\mathbf{r}, t) = \psi(\mathbf{r})f(t).$$

Substituting into the Schrödinger equation yields separate equations for space and time, each equal to a constant.

Derivation and Energy Constant

Starting from the time-dependent Schrödinger equation:

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + V(\mathbf{r}) \Psi$$

and using the separable form $\Psi(\mathbf{r}, t) = \psi(\mathbf{r})f(t)$, we obtain:

$$i\hbar \psi(\mathbf{r}) \frac{df(t)}{dt} = f(t) \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \right] \psi(\mathbf{r})$$

which separates the time and spatial parts. Dividing by $\psi(\mathbf{r})f(t)$ gives

$$\frac{1}{f} \frac{df}{dt} = -\frac{iE}{\hbar}, \quad \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \right] \psi = E\psi.$$

Integrating yields $f(t) = e^{-iEt/\hbar}$; the second equation is the **time-independent Schrödinger equation (TISE)**.

Eigenvalue Equation Form

$$\hat{H}\psi(\mathbf{r}) = E\psi(\mathbf{r}), \quad \hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r}).$$

\hat{H} acting on ψ multiplies it by E ; such an equation is an **eigenvalue equation**.
 ψ is an **eigenfunction**, E an **eigenvalue**.

The set of all E is the **eigenvalue spectrum**.

The problem of solving the Schrödinger equation reduces to finding eigenvalues and eigenfunctions of \hat{H} .

Degeneracy

Sometimes more than one linearly independent eigenfunction corresponds to the same eigenvalue.

Such an eigenvalue is **degenerate**.

If there are k independent eigenfunctions for the same E , the eigenvalue is **k -fold degenerate**.

Any linear combination of degenerate eigenfunctions is also an eigenfunction:

$$\Psi = c_1 \Psi_1 + c_2 \Psi_2 + \cdots + c_k \Psi_k.$$

Reality of Eigenvalues

Let E be the eigenvalue corresponding to eigenfunction Ψ :

$$\hat{H}\Psi = E\Psi.$$

The Hamiltonian \hat{H} is a **Hermitian operator**.

Therefore, all energy eigenvalues are **real**.

Stationary States

For a separable wavefunction, the probability density is

$$|\Psi(\mathbf{r}, t)|^2 = |\psi(\mathbf{r})|^2 |f(t)|^2 = |\psi(\mathbf{r})|^2,$$

which is independent of time.

These are called **stationary states**.

The expectation value of total energy equals the eigenvalue E for all time if the wavefunction is normalized.

Orthogonality and Orthonormality

Eigenfunctions corresponding to distinct eigenvalues are **orthogonal**.

If normalized, we combine orthogonality with normalization:

$$\int \psi_k^* \psi_n \, d\tau = \begin{cases} 1, & k = n, \\ 0, & k \neq n. \end{cases}$$

This is the **orthonormality condition**.

Parity in One Dimension

Suppose the potential is symmetric: $V(-x) = V(x)$.

Under the reflection $x \rightarrow -x$ (parity operation), Schrödinger's equation is invariant.

If $\psi(x)$ is an eigenfunction, $\psi(-x)$ is another eigenfunction with the same eigenvalue E .

Even and Odd Wavefunctions

If the eigenvalue is nondegenerate, $\psi(-x)$ and $\psi(x)$ differ only by a constant. Hence, eigenfunctions can be classified as:

$$\psi(-x) = +\psi(x) \quad (\text{even}), \quad \psi(-x) = -\psi(x) \quad (\text{odd}).$$

Q1. For a time-independent potential $V(\mathbf{r})$, the wavefunction can be written as:

- A. $\Psi(\mathbf{r}, t) = \psi(\mathbf{r}) + f(t)$
- B. $\Psi(\mathbf{r}, t) = \psi(\mathbf{r})f(t)$
- C. $\Psi(\mathbf{r}, t) = \psi(\mathbf{r})t$
- D. $\Psi(\mathbf{r}, t) = \psi(\mathbf{r}) - f(t)$

Q2. The separation constant appearing after separation of variables equals:

- A. Momentum
- B. Normalization constant
- C. Energy E
- D. Parity

Q3. The time part of an energy eigenfunction is proportional to:

- A. $e^{-iEt/\hbar}$
- B. $e^{+iEt/\hbar}$
- C. $e^{-Et/\hbar}$
- D. $e^{+Et/\hbar}$

Q4. The time-independent Schrödinger equation is expressed as:

- A. $\hat{H}\psi = E\psi$
- B. $\hat{p}\psi = i\hbar\partial_x\psi$
- C. $\nabla^2\psi = 0$
- D. $\hat{H}\psi = iE$

Q5. The complete set of all eigenvalues of \hat{H} is the:

- A. State space
- B. Eigenvalue spectrum
- C. Configuration space
- D. Momentum space

Q6. More than one independent eigenfunction with the same E means the level is:

- A. Normalized
- B. Stationary
- C. Degenerate
- D. Orthogonal

Q7. A linear combination of degenerate eigenfunctions is:

- A. Not an eigenfunction
- B. An eigenfunction with the same eigenvalue
- C. An eigenfunction with a different eigenvalue
- D. Only approximately an eigenfunction

Q8. Hermiticity of \hat{H} ensures that:

- A. Energy eigenvalues are always complex
- B. Energy eigenvalues are always real
- C. Energy eigenvalues are imaginary
- D. Energy eigenvalues are arbitrary

Q9. For $\Psi = \psi e^{-iEt/\hbar}$, the probability density is:

- A. Time-dependent
- B. Constant in time
- C. Exponentially decaying
- D. Oscillatory

Q10. The expectation value of \hat{H} for a normalized eigenstate equals:

- A. \hbar
- B. 0
- C. The eigenvalue E
- D. Only kinetic energy

Q11. Eigenfunctions of distinct eigenvalues are:

- A. Orthogonal
- B. Parallel
- C. Equal
- D. Arbitrary

Q12. The orthonormality condition is:

- A. $\int \psi_k^* \psi_n d\tau = \delta_{kn}$
- B. $\int \psi_k \psi_n d\tau = 1$
- C. $\int |\psi_n|^2 d\tau = 0$
- D. $\psi_k = \psi_n$

Q13. For $V(-x) = V(x)$, the system is symmetric under:

- A. Time reversal
- B. Parity operation
- C. Translation
- D. Scaling

Q14. Nondegenerate energy levels in even potentials correspond to eigenfunctions that are:

- A. Even or odd
- B. Only even
- C. Only odd
- D. Neither even nor odd

MCQs (15–16)

Q15. The parity relation for even and odd functions is:

- A. $\psi(-x) = +\psi(x)$ or $\psi(-x) = -\psi(x)$
- B. $\psi(-x) = i\psi(x)$
- C. $\psi(-x) = \psi^*(x)$
- D. $\psi(-x) = 0$

Q16. The one-dimensional Schrödinger equation is:

- A. $-\frac{\hbar^2}{2m} \frac{d^2\psi}{dx^2} + V(x)\psi = E\psi$
- B. $i\hbar \frac{\partial\psi}{\partial t} = \hat{H}\psi$
- C. $\hat{p}\psi = -i\hbar \frac{d\psi}{dx}$
- D. $\nabla^2\psi = 0$

MCQs (17–18)

Q17. If ψ_1, ψ_2 are orthogonal eigenfunctions with the same E , $c_1\psi_1 + c_2\psi_2$ is:

- A. Not normalizable
- B. An eigenfunction with eigenvalue E
- C. An eigenfunction with eigenvalue $E_1 + E_2$
- D. Purely imaginary

Q18. The 3D Hamiltonian operator is:

- A. $\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})$
- B. $\hat{H} = i\hbar\frac{\partial}{\partial t}$
- C. $\hat{H} = \nabla + V$
- D. $\hat{H} = \mathbf{r}$

Q19. Hermiticity of \hat{H} implies:

- A. Real measurable energies
- B. Imaginary eigenvalues
- C. Infinite degeneracy
- D. Random phases

Q20. Stationary states have:

- A. Constant probability density
- B. Decaying probability density
- C. Increasing momentum
- D. Nonconserved energy