



## MEDICAL PHYSICS

### Second Stage

**Lec6**

### MATRIX & ARRAY OPERATIONS

Asst.lect.lubna ali jalil

The matrix consists of a number of rows and a number of columns, each of which is symbolized by a transformation. We use matrices in many engineering applications to solve complex problems. The elements of the matrix can be real or complex values, and the rows are usually symbolized by

`MATRICNAME(M,N)`

Where: **m** is the number of rows, **n** is the number of columns.

- Create a (4,4) matrix named A

`A = [3 4 4 3 ; 4 5 6 7 ; 5 6 7 4 ; 4 5 6 7]`

|   |   |   |   |
|---|---|---|---|
| 3 | 4 | 4 | 3 |
| 4 | 5 | 6 | 7 |
| 5 | 6 | 7 | 4 |
| 4 | 5 | 6 | 7 |

-RECALL AN ELEMENT FROM AN ARRAY BY ROW NUMBER AND COLUMN NUMBER.

To call the second element from the third row, we write:

For example

`A(3,2) ans = 6`

- RECALL AN ELEMENT FROM AN ARRAY BY SORTING IT.

`A(8) ans = 5`

\*Where counting is done from the top of the column to the bottom and in order.

- Recall a row from an

array.  $A(3,:)$  ans = 5 6 7 4

- RECALL A COLUMN FROM AN ARRAY.

$A(:,4)$

Ans =

3  
7  
4  
7

- RECALL THE SECOND ROW THAT CONTAINS THE LAST THREE ELEMENTS (WITHOUT THE FIRST ELEMENT).

$A(2,2:4)$  ans = 5 6 7

- RECALL THE FIRST AND LAST ELEMENTS OF THE THIRD ROW.

$A(3,1:3:4)$  ans = 5 4

- ADD A COLUMN AT THE END OF THE ARRAY.

$A(:,5) = [3 5 0 0]$

|   |   |   |   |   |
|---|---|---|---|---|
| 3 | 4 | 4 | 3 | 3 |
| 4 | 5 | 6 | 7 | 5 |
| 5 | 6 | 7 | 4 | 0 |
| 4 | 5 | 6 | 7 | 0 |

- Delete the second column from the new matrix.

$A(:,2) = []$

The matrix becomes as shown

|   |   |   |   |
|---|---|---|---|
| 3 | 4 | 3 | 3 |
| 4 | 6 | 7 | 5 |
| 5 | 7 | 4 | 0 |
| 4 | 6 | 7 | 0 |

- REPLACE AN ELEMENT OF THE MATRIX WITH A NEW ELEMENT.

$A(3,4) = 11$

The matrix becomes as shown

|   |   |   |    |
|---|---|---|----|
| 3 | 4 | 3 | 3  |
| 4 | 6 | 7 | 5  |
| 5 | 7 | 4 | 11 |
| 4 | 6 | 7 | 0  |

## Additional Matrix Operations in MATLAB

`sum_all = sum(A(:));` Calculates the total sum of all elements in matrix A.

`row_sum = sum(A, 2);` Calculates the sum of each row in matrix A.

`col_sum = sum(A, 1);` Calculates the sum of each column in matrix A.

`row_mean = mean(A, 2);` Calculates the average of each row.

`col_mean = mean(A, 1);` Calculates the average of each column.

`max_val = max(A(:));` Finds the largest value in the matrix.

`min_val = min(A(:));` Finds the smallest value in the matrix.

`sorted_A = sort(A(:));` Sorts all matrix elements in ascending order.

`flip_h = fliplr(A);` Flips the matrix horizontally (left to right).

`flip_v = flipud(A);` Flips the matrix vertically (top to bottom).

`rotated_A = rot90(A);` Rotates the matrix 90 degrees counterclockwise.

`A_transpose = A';` Transposes the matrix (rows become columns).

