

Magnetism

Lecture 2

Vectors

Msc. Ali Jaafar

2nd stage

Department of medical physics Al-Mustaqlal
University-College

2024- 2025

This lecture is concerned with vectors. A vector has a magnitude and a direction. The speed of an object is a scalar, whereas its velocity is a vector.

Vector is a quantity having both magnitude and direction such as displacement, velocity, force and acceleration.

A scalar quantity: is a quantity which is completely characterized by its magnitude. Examples of physical quantities that are scalar are **mass, time, temperature, volume, and work.**

A vector quantity: is a quantity which is completely characterized by its magnitude and direction. Force, velocity, displacement, and acceleration are examples of vector quantities. A vector can be represented geometrically by an arrow whose direction is approximately chosen and whose length is proportional to the magnitude of the vector.

Field: If at each point of a region there is a corresponding value of some physical function, the region is called a field. Fields may be classified as either scalar or vector, depending upon the type of function involved.

Vectors: The Basic Concept

- **Magnitude:** The value of the vector (its length).
- **Direction:** Indicates the direction the vector is pointing to.
- **Representation:** A vector is represented by an arrow whose length represents the magnitude and whose direction shows its orientation.

Vector Addition and Subtraction Graphically

- **Start by drawing the first vector:** Draw the first vector on the graph.
- **Add the second vector:** Place the tail of the second vector at the head of the first vector.
- **Resultant vector:** Draw the resultant vector from the tail of the first vector to the head of the second vector.
- **Vector subtraction:** To subtract two vectors, simply reverse the direction of the second vector (find the negative of the vector), then add it using the same method.

Properties of Vector Addition

- **Commutativity** : $A+B=B+A$
- **Associativity** : $A+(B+C)=(A+B)+C$
- **Additive Identity**: $A+0=A$ (The zero vector is the identity element).

1. Vector Algebra

Vector: It is the basic building unit of linear algebra. Rather, it is the foundation on which all linear algebra is based.

Laws of vector algebra. If A, B and C are vectors and m and n are scalars, then

$$A+B=B+A \quad \text{Commutative Law for Addition}$$

$$A+(B+C)=(A+B)+C \quad \text{Associative Law for Addition}.$$

Example:-1

$$\text{Prove: } -(5+7) = (-4)+(-8)$$

Proof:

$$-(12) = -4-8$$

$$-12 = -12$$

$$\text{L.H.S} = \text{R.H.S}$$

Example:-2

Let us take $A = 2$, $B = 4$ and $C = 6$

$$\text{L.H.S} = A+(B+C) = 2 + (4 + 6)$$

$$= 12$$

$$\text{R.H.S} = (A+B)+C = (2 + 4) + 6$$

$$= 12$$

$$\text{L.H.S} =$$

$$\text{R.H.S} = 12$$

2. Scalar product

The process of multiplying a vector quantity by another vector quantity, the product of which is a non-vector scalar quantity, which has only an amount..

$$\vec{a} \cdot \vec{b} = |a||b|\cos(\theta)$$

$$\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$$

$$\hat{i} \cdot \hat{j} = \hat{i} \cdot \hat{k} = \hat{j} \cdot \hat{k} = 0$$

- If $\underline{A} \cdot \underline{B} = 0$ and **A and B are not null vectors, then A and B are perpendicular.**

Example:

Calculate the scalar product of vectors **a** and **b** when the modulus of **a** is 9, modulus of **b** is 9 and the angle between the two vectors is 60° .

Solution:

To determine the scalar product of vectors **a** and **b**, we will use the scalar product formula.

$$a \cdot b = |a| |b| \cos \theta$$

$$= 9 \times 9 \cos 60^\circ$$

$$= 81 \times 1/2$$

$$= \dots\dots$$

Example:

$$\vec{A} = 2\hat{i} + 3\hat{j} \quad \vec{B} = -\hat{i} + 2\hat{j}$$

$$\begin{aligned} \mathbf{A} \cdot \mathbf{B} &= (2\hat{i} + 3\hat{j}) \cdot (-\hat{i} + 2\hat{j}) \\ &= -2\hat{i} \cdot \hat{i} + 2\hat{i} \cdot 2\hat{j} - 3\hat{j} \cdot \hat{i} + 3\hat{j} \cdot 2\hat{j} \\ &= -2(1) + 4(0) - 3(0) + 6(1) \\ &= -2 + 6 = 4 \end{aligned}$$

To calculate the angle between two vectors, we must find the magnitude of each vector.

$$A = \sqrt{A_x^2 + A_y^2} = \sqrt{(2)^2 + (3)^2} = \sqrt{13}$$

$$B = \sqrt{B_x^2 + B_y^2} = \sqrt{(-1)^2 + (2)^2} = \sqrt{5}$$

$$\cos \theta = \frac{\mathbf{A} \cdot \mathbf{B}}{AB} = \frac{4}{\sqrt{13}\sqrt{5}} = \frac{4}{\sqrt{65}}$$

$$\theta = \cos^{-1} \frac{4}{8.06} = 60.2^\circ$$

3. Vector products

The process of multiplying a vector quantity by another vector quantity, the product of which is a vector quantity with magnitude and direction.

- The cross product of two vectors is given by the formula

$$\vec{a} \times \vec{b} = |a||b| \sin(\theta).$$

❖ Cross or vector product

The following laws are valid:

1. $\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$ Commutative Law for Cross Products Fails
2. $\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = \mathbf{A} \times \mathbf{B} + \mathbf{A} \times \mathbf{C}$ Distributive Law
3. $m(\mathbf{A} \times \mathbf{B}) = (mA) \times \mathbf{B} = \mathbf{A} \times (m\mathbf{B}) = (\mathbf{A} \times \mathbf{B})m$, where m is a scalar.
4. $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0}$

$$\mathbf{i} \times \mathbf{j} = -\mathbf{j} \times \mathbf{i} = \mathbf{k},$$

$$\mathbf{j} \times \mathbf{k} = -\mathbf{k} \times \mathbf{j} = \mathbf{i},$$

$$\mathbf{k} \times \mathbf{i} = -\mathbf{i} \times \mathbf{k} = \mathbf{j}.$$

5. If $\mathbf{A} = A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k}$ and $\mathbf{B} = B_1 \mathbf{i} + B_2 \mathbf{j} + B_3 \mathbf{k}$, then

6. The magnitude of $\mathbf{A} \times \mathbf{B}$ is the same as the area of a parallelogram with sides \mathbf{A} and \mathbf{B} .

7. If $\mathbf{A} \times \mathbf{B} = \mathbf{0}$ and \mathbf{A} and \mathbf{B} are not null vectors, then \mathbf{A} and \mathbf{B} are **parallel**.

Example: Find the cross product of two vectors $\vec{a} = (3,4,5)$ and $\vec{b} = (7,8,9)$

Solution:

The cross product is given as,

$$\begin{aligned}
 & \begin{matrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \end{matrix} \quad \leftarrow \\
 \mathbf{a} \times \mathbf{b} &= \begin{matrix} 3 & 4 & 5 \\ 7 & 8 & 9 \end{matrix} \\
 &= [(4 \times 9) - (5 \times 8)] \hat{\mathbf{i}} - [(3 \times 9) - (5 \times 7)] \hat{\mathbf{j}} + [(3 \times 8) - (4 \times 7)] \hat{\mathbf{k}} \\
 &= (36 - 40) \hat{\mathbf{i}} - (27 - 35) \hat{\mathbf{j}} + (24 - 28) \hat{\mathbf{k}} = -4 \hat{\mathbf{i}} + 8 \hat{\mathbf{j}} - 4 \hat{\mathbf{k}}
 \end{aligned}$$

H.W: Two vectors have their scalar magnitude as $|\mathbf{a}| = 2\sqrt{3}$ and $|\mathbf{b}| = 4$, while the angle between the two vectors is 60° . Calculate the cross product of two vectors